Quantitative domains via fuzzy sets: Part II: Fuzzy Scott topology on fuzzy directed-complete posets

This paper pursues an investigation on quantitative domains via fuzzy sets initiated by the first author. This time we define an L-topology, called the fuzzy Scott topology, on fuzzy dcpos and investigate its properties. Scott convergence of stratified L-filters is also defined and studied. We show that a fuzzy dcpo (X,e) is continuous if and only if for any stratified L-filter on X, Scott convergence coincides with the convergence with respect to the fuzzy Scott topology. At last, we show that the category of fuzzy dcpos with fuzzy Scott continuous maps is Cartesian-closed.

[1]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[2]  Dexue Zhang,et al.  Fuzzy preorder and fuzzy topology , 2006, Fuzzy Sets Syst..

[3]  Dexue Zhang,et al.  Fundamental study: Complete and directed complete Ω-categories , 2007 .

[4]  Arun K. Srivastava,et al.  SIERPINSKI OBJECTS IN SUBCATEGORIES OF FTS , 1988 .

[5]  Stephen E. Rodabaugh,et al.  Powerset Operator Foundations For Poslat Fuzzy Set Theories And Topologies , 1999 .

[6]  Alexander P. Sostak,et al.  Axiomatic Foundations Of Fixed-Basis Fuzzy Topology , 1999 .

[7]  Y Liu POINTWISE CHARACTERIZATION OF COMPLETE REGULARITY AND IMBEDDING THEOREM IN FUZZY TOPOLOGICAL SPACES , 1983 .

[8]  Qi-Ye Zhang,et al.  Continuity in quantitative domains , 2005, Fuzzy Sets Syst..

[9]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[10]  J. Goguen L-fuzzy sets , 1967 .

[11]  U. Höhle Many Valued Topology and its Applications , 2001 .

[12]  Wei Yao,et al.  On many-valued stratified L-fuzzy convergence spaces , 2008, Fuzzy Sets Syst..

[13]  Ulrich Höhle,et al.  Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory , 1998 .

[14]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[15]  Gunther Jäger,et al.  Subcategories of lattice-valued convergence spaces , 2005, Fuzzy Sets Syst..

[16]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[17]  Wei Yao,et al.  Quantitative domains via fuzzy sets: Part I: Continuity of fuzzy directed complete posets , 2010, Fuzzy Sets Syst..

[18]  Jan J. M. M. Rutten,et al.  Elements of Generalized Ultrametric Domain Theory , 1996, Theor. Comput. Sci..

[19]  Weixian Xie,et al.  Fuzzy complete lattices , 2009, Fuzzy Sets Syst..

[20]  A. Pultr,et al.  Examples For Different Sobrieties In Fixed-Basis Topology , 2003 .

[21]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[22]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[23]  Ying-ming Liu,et al.  Fuzzy Topology , 1998, Advances in Fuzzy Systems - Applications and Theory.

[24]  L. Zadeh Fuzzy Topology. I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Convergence* , 2003 .

[25]  Kim R. Wagner,et al.  Solving Recursive Domain Equations with Enriched Categories. , 1994 .

[26]  Sheng-Gang Li Separation axioms in L-fuzzy topological spaces (I): T0 and T1 , 2000, Fuzzy Sets Syst..

[27]  Gunther Jäger,et al.  A CATEGORY OF L-FUZZY CONVERGENCE SPACES , 2001 .

[28]  Stephen E. Rodabaugh,et al.  Lattice-Valued Frames, Functor Categories, And Classes Of Sober Spaces , 2003 .

[29]  Gu Min Layer Separation Axioms in L-Fuzzy Topological Spaces , 2003 .

[30]  V. Rich Personal communication , 1989, Nature.

[31]  Lei Fan,et al.  A New Approach to Quantitative Domain Theory , 2001, MFPS.

[32]  Robert Lowen,et al.  The epireflective hull of the Sierpinski object in FTS , 1989 .

[33]  Stephen E. Rodabaugh,et al.  Point-set lattice-theoretic topology , 1991 .

[34]  Ivan L. Reilly,et al.  Separation axioms in fuzzy topological spaces , 1980 .

[35]  lawa Kanas,et al.  Metric Spaces , 2020, An Introduction to Functional Analysis.