Vector Spaces of Linearizations for Matrix Polynomials: A Bivariate Polynomial Approach

We revisit the landmark paper [D. S. Mackey et al. SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971--1004] and, by viewing matrices as coefficients for bivariate polynomials, we provide concise proofs for key properties of linearizations for matrix polynomials. We also show that every pencil in the double ansatz space is intrinsically connected to a Bezout matrix, which we use to prove the eigenvalue exclusion theorem. In addition our exposition allows for any polynomial basis and for any field. The new viewpoint also leads to new results. We generalize the double ansatz space by exploiting its algebraic interpretation as a space of Bezout pencils to derive new linearizations with potential applications in the theory of structured matrix polynomials. Moreover, we analyze the conditioning of double ansatz space linearizations in the important practical case of a Chebyshev basis.

[1]  I. J. Good THE COLLEAGUE MATRIX, A CHEBYSHEV ANALOGUE OF THE COMPANION MATRIX , 1961 .

[2]  Lloyd N. Trefethen,et al.  An Extension of Chebfun to Two Dimensions , 2013, SIAM J. Sci. Comput..

[3]  Yuji Nakatsukasa,et al.  On the stability of computing polynomial roots via confederate linearizations , 2015, Math. Comput..

[4]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[5]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[6]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[7]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[8]  M. Tismenetsky,et al.  Generalized Bezoutian and the inversion problem for block matrices, I. General scheme , 1986 .

[9]  R. E. Hartwig,et al.  Group inverses and Drazin inverses of bidiagonal and triangular Toeqlitz matrices , 1977, Journal of the Australian Mathematical Society.

[10]  W. Specht,et al.  Die Lage der Nullstellen eines Polynoms. III , 1957 .

[11]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[12]  S. Barnett Polynomials and linear control systems , 1983 .

[13]  D. Kressner,et al.  Chebyshev interpolation for nonlinear eigenvalue problems , 2012 .

[14]  M. Tismenetsky,et al.  The Bezoutian and the eigenvalue-separation problem for matrix polynomials , 1982 .

[15]  Frann Coise Tisseur Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .

[16]  Alex Townsend,et al.  Computing the common zeros of two bivariate functions via Bézout resultants , 2015, Numerische Mathematik.

[17]  P. Lancaster,et al.  Linearization of matrix polynomials expressed in polynomial bases , 2008 .

[18]  Volker Mehrmann,et al.  Smith Forms of Palindromic Matrix Polynomials , 2011 .

[19]  P. Lancaster,et al.  11. Factorization of Self-Adjoint Matrix Polynomials , 2009 .

[20]  F. M. Dopico,et al.  LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND THE RECOVERY OF MINIMAL INDICES , 2009 .

[21]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[22]  B. O. Anderson,et al.  Generalized Bezoutian and Sylvester matrices in multivariable linear control , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[23]  Daniel Kressner,et al.  Memory‐efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis , 2014, Numer. Linear Algebra Appl..

[24]  Alex Townsend,et al.  Numerical Instability of Resultant Methods for Multidimensional Rootfinding , 2015, SIAM J. Numer. Anal..

[25]  N. S. Barnett,et al.  Private communication , 1969 .

[26]  Nicholas J. Higham,et al.  The Conditioning of Linearizations of Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[27]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[28]  Nicholas J. Higham,et al.  Definite Matrix Polynomials and their Linearization by Definite Pencils , 2009, SIAM J. Matrix Anal. Appl..

[29]  Michiel Hazewinkel,et al.  Algebras, rings and modules , 2004 .

[30]  Michiel Hazewinkel,et al.  Algebras, Rings and Modules: Volume 1 , 2004 .