N-EXTREMAL MATRICES OF MEASURES FOR AN INDETERMINATE MATRIX MOMENT PROBLEM

In this paper we study the N-extremal matrices of measures associated to a completely indeterminate matrix moment problem, i.e., those matrices of measure W, solutions of a completely indeterminate matrix moment problem for which the linear space of matrix polynomials is dense in the corresponding L2(W).

[1]  P. López-Rodríguez Riesz's Theorem for Orthogonal Matrix Polynomials , 1999 .

[2]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[3]  Antonio José Durán Guardeño,et al.  Orthogonal matrix polynomials: zeros and Blumenthal's theorem , 1996 .

[4]  A. J. Durán,et al.  Density Questions for the Truncated Matrix Moment Problem , 1997, Canadian Journal of Mathematics.

[5]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[6]  Antonio J. Durán,et al.  On Orthogonal Polynomials With Respect to a Positive Definite Matrix of Measures , 1995, Canadian Journal of Mathematics.

[7]  A. J. Durán A Generalization of Favard's Theorem for Polynomials Satisfying a Recurrence Relation , 1993 .

[8]  A. Aptekarev,et al.  The Scattering Problem for a Discrete Sturm-Liouville Operator , 1984 .

[9]  A. J. Durán,et al.  The LpSpace of a Positive Definite Matrix of Measures and Density of Matrix Polynomials inL1 , 1997 .

[10]  Walter Van Assche,et al.  Orthogonal matrix polynomials and higher-order recurrence relations , 1993 .

[11]  Antonio J. Durán Markov's theorem for orthogonal matrix polynomials , 1996 .

[12]  P. Lopez-Rodriguez THE NEVANLINNA PARAMETRIZATION FOR A MATRIX MOMENT PROBLEM , 2001 .

[13]  Marcel Riesz,et al.  Sur le problme des moments et le thorme de Parseval correspondant , 1924 .

[14]  Antonio J. Durán,et al.  ORTHOGONAL MATRIX POLYNOMIALS: ZEROS AND BLUMENTHAL'S THEOREM , 1996 .