N-EXTREMAL MATRICES OF MEASURES FOR AN INDETERMINATE MATRIX MOMENT PROBLEM
暂无分享,去创建一个
[1] P. López-Rodríguez. Riesz's Theorem for Orthogonal Matrix Polynomials , 1999 .
[2] I. M. Glazman,et al. Theory of linear operators in Hilbert space , 1961 .
[3] Antonio José Durán Guardeño,et al. Orthogonal matrix polynomials: zeros and Blumenthal's theorem , 1996 .
[4] A. J. Durán,et al. Density Questions for the Truncated Matrix Moment Problem , 1997, Canadian Journal of Mathematics.
[5] R. Bolstein,et al. Expansions in eigenfunctions of selfadjoint operators , 1968 .
[6] Antonio J. Durán,et al. On Orthogonal Polynomials With Respect to a Positive Definite Matrix of Measures , 1995, Canadian Journal of Mathematics.
[7] A. J. Durán. A Generalization of Favard's Theorem for Polynomials Satisfying a Recurrence Relation , 1993 .
[8] A. Aptekarev,et al. The Scattering Problem for a Discrete Sturm-Liouville Operator , 1984 .
[9] A. J. Durán,et al. The LpSpace of a Positive Definite Matrix of Measures and Density of Matrix Polynomials inL1 , 1997 .
[10] Walter Van Assche,et al. Orthogonal matrix polynomials and higher-order recurrence relations , 1993 .
[11] Antonio J. Durán. Markov's theorem for orthogonal matrix polynomials , 1996 .
[12] P. Lopez-Rodriguez. THE NEVANLINNA PARAMETRIZATION FOR A MATRIX MOMENT PROBLEM , 2001 .
[13] Marcel Riesz,et al. Sur le problme des moments et le thorme de Parseval correspondant , 1924 .
[14] Antonio J. Durán,et al. ORTHOGONAL MATRIX POLYNOMIALS: ZEROS AND BLUMENTHAL'S THEOREM , 1996 .