Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations

Uncertainties in L-band (1.4 GHz) microwave radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation optical depth and scattering albedo for large-scale applications are difficult to obtain from field studies and often lack an estimate of uncertainty. Here, a Markov Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of simulated and observed Tb at multiple incidence angles, at horizontal and vertical polarizations, and for morning and evening overpasses. Tb simulations are generated with the land model component of the Goddard Earth Observing System (version 5) and confronted with Tb observations from the Soil Moisture Ocean Salinity satellite mission. The maximum a posteriori density (MAP) parameter values reduce the root-mean-square differences between observed and simulated long-term Tb averages and standard deviations to 3.4 K and 2.3 K, respectively. The relative uncertainty of the posterior RTM parameter estimates is typically less than 25% of the MAP parameter value, whereas it exceeds 100% for literature-based prior parameter estimates. It is also shown that the parameter values estimated through Particle Swarm Optimization are in close agreement with those obtained from MCMC simulation. The MCMC results for the RTM parameter values and the uncertainties presented herein are directly relevant to the need for accurate Tb modeling in global land data assimilation systems.

[1]  Joost C. B. Hoedjes,et al.  SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing , 2006 .

[2]  G. Lannoy,et al.  Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over Nonfrozen Land Using SMOS Observations , 2013 .

[3]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[4]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[5]  Robert M. Parinussa,et al.  Error Estimates for Near-Real-Time Satellite Soil Moisture as Derived From the Land Parameter Retrieval Model , 2011, IEEE Geoscience and Remote Sensing Letters.

[6]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[7]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Yann Kerr,et al.  Two-year global simulation of L-band brightness temperatures over land , 2003, IEEE Trans. Geosci. Remote. Sens..

[9]  C. J. McGrath,et al.  Effect of exchange rate return on volatility spill-over across trading regions , 2012 .

[10]  B. Choudhury,et al.  Effect of surface roughness on the microwave emission from soils , 1979 .

[11]  E. Njoku,et al.  The Soil Moisture Active and Passive Mission (SMAP): Science and applications , 2009, 2009 IEEE Radar Conference.

[12]  Arnaud Mialon,et al.  The SMOS Soil Moisture Retrieval Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Charles A. Laymon,et al.  Parameter sensitivity of soil moisture retrievals from airborne L-band radiometer measurements in SMEX02 , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Jeffrey P. Walker,et al.  Improved Understanding of Soil Surface Roughness Parameterization for L-Band Passive Microwave Soil Moisture Retrieval , 2009, IEEE Geoscience and Remote Sensing Letters.

[15]  T. Schmugge,et al.  An Empirical Model for the Complex Dielectric Permittivity of Soils as a Function of Water Content , 1980, IEEE Transactions on Geoscience and Remote Sensing.

[16]  N. Takegawa,et al.  Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China , 2009 .

[17]  B. Choudhury,et al.  Remote sensing of soil moisture content over bare field at 1.4 GHz frequency , 1981 .

[18]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[19]  J. Wigneron,et al.  A field experiment on microwave forest radiometry: L-band signal behaviour for varying conditions of surface wetness , 2007 .

[20]  J. Vrugt,et al.  Toward diagnostic model calibration and evaluation: Approximate Bayesian computation , 2013 .

[21]  Dara Entekhabi,et al.  Effect of Radiative Transfer Uncertainty on L-Band Radiometric Soil Moisture Retrieval , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Stéphane Bélair,et al.  A Global Root-Zone Soil Moisture Analysis Using Simulated L-band Brightness Temperature in Preparation for the Hydros Satellite Mission , 2006 .

[23]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[24]  Jasper A. Vrugt,et al.  Multiresponse multilayer vadose zone model calibration using Markov chain Monte Carlo simulation and field water retention data , 2011 .

[25]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[26]  Jeffrey P. Walker,et al.  Extended versus Ensemble Kalman Filtering for Land Data Assimilation , 2002 .

[27]  M. Drusch,et al.  Comparing ERA-40-based L-band brightness temperatures with skylab observations: a calibration/validation study using the community microwave emission model. , 2009 .

[28]  Thomas R. Loveland,et al.  The IGBP-DIS global 1 km land cover data set , 1997 .

[29]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[30]  R. Koster,et al.  Assessment and Enhancement of MERRA Land Surface Hydrology Estimates , 2011 .

[31]  Praveen Kumar,et al.  A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure , 2000 .

[32]  Yann Kerr,et al.  Soil Moisture , 1922, Botanical Gazette.

[33]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[34]  Niko E. C. Verhoest,et al.  Assessment of model uncertainty for soil moisture through ensemble verification , 2006 .

[35]  Andrea Benedetto,et al.  Remote Sensing of Soil Moisture Content by GPR Signal Processing in the Frequency Domain , 2011, IEEE Sensors Journal.

[36]  Y. Kerr,et al.  A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space , 1990 .

[37]  Cajo J. F. ter Braak,et al.  Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation , 2008 .

[38]  Sergey A. Komarov,et al.  Generalized refractive mixing dielectric model for moist soils , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[39]  A. Belward,et al.  The IGBP-DIS global 1km land cover data set, DISCover: First results , 1997 .

[40]  Yann Kerr,et al.  AMMA Land Surface Model Intercomparison experiment coupled to the Community Microwave Emission Model: ALMIP-MEM , 2009 .

[41]  V. H. Kaupp,et al.  Generalized refractive mixing dielectric model for moist soils , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[42]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[43]  J. M. Sabater,et al.  Sensitivity of L-band NWP forward modelling to soil roughness , 2011 .