Iron–light interactions during the CROZet natural iron bloom and EXport experiment (CROZEX): II—Taxonomic responses and elemental stoichiometry

[1]  E. Popova,et al.  Physical conditions controlling the development of a regular phytoplankton bloom north of the Crozet Plateau, Southern Ocean , 2007 .

[2]  H. Venables,et al.  New production and the f ratio around the Crozet Plateau in austral summer 2004-2005 diagnosed from seasonal changes in inorganic nutrient levels , 2007 .

[3]  J. Allen,et al.  Iron–light interactions during the CROZet natural iron bloom and EXport experiment (CROZEX) I: Phytoplankton growth and photophysiology , 2007 .

[4]  C. Moore,et al.  Phytoplankton productivity and community structure in the vicinity of the Crozet Plateau during austral summer 2004/2005 , 2007 .

[5]  A. Watson,et al.  The island mass effect and biological carbon uptake for the subantarctic Crozet Archipelago , 2007 .

[6]  J. Hughes,et al.  Community structure and grazing impact of mesozooplankton during late spring/early summer 2004/2005 in the vicinity of the Crozet Islands (Southern Ocean) , 2007 .

[7]  R. B. Pearce,et al.  Estimating carbon, silica and diatom export from a naturally fertilised phytoplankton bloom in the Southern Ocean using PELAGRA: a novel drifting sediment trap , 2007 .

[8]  H. Venables,et al.  Large-scale circulation around the Crozet Plateau controls an annual phytoplankton bloom in the Crozet Basin , 2007 .

[9]  C. Moore,et al.  Phytoplankton community composition around the Crozet Plateau, with emphasis on diatoms and Phaeocystis , 2007 .

[10]  N. Mahowald,et al.  Dissolved iron in the vicinity of the Crozet Islands, Southern Ocean , 2007 .

[11]  P. Statham,et al.  The Crozet natural iron bloom and export experiment (CROZEX). Special issue , 2007 .

[12]  I. Peeken,et al.  Different reactions of Southern Ocean phytoplankton size classes to iron fertilization , 2006 .

[13]  Ulf Riebesell,et al.  Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment , 2005 .

[14]  N. M. Price The elemental stoichiometry and composition of an iron‐limited diatom , 2005 .

[15]  L. Øvreås,et al.  Use of non‐limiting substrates to increase size; a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs? , 2005 .

[16]  K. Arrigo Marine microorganisms and global nutrient cycles , 2005, Nature.

[17]  Victor Smetacek,et al.  The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles , 2004, Antarctic Science.

[18]  K. Timmermans,et al.  Growth rates, half‐saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open‐ocean diatoms from the Southern Ocean , 2004 .

[19]  Taro Takahashi,et al.  Southern Ocean Iron Enrichment Experiment: Carbon Cycling in High- and Low-Si Waters , 2004, Science.

[20]  M. Brzezinski,et al.  High-latitude controls of thermocline nutrients and low latitude biological productivity , 2004, Nature.

[21]  P. Falkowski,et al.  The evolutionary inheritance of elemental stoichiometry in marine phytoplankton , 2003, Nature.

[22]  Victor Smetacek,et al.  Architecture and material properties of diatom shells provide effective mechanical protection , 2003, Nature.

[23]  D. H. Robinson,et al.  Taxon‐specific differences in C/P and N/P drawdown for phytoplankton in the Ross Sea, Antarctica , 2002 .

[24]  P. Boyd,et al.  ENVIRONMENTAL FACTORS CONTROLLING PHYTOPLANKTON PROCESSES IN THE SOUTHERN OCEAN1 , 2002 .

[25]  M. Brzezinski,et al.  A switch from Si(OH)4 to NO3− depletion in the glacial Southern Ocean , 2002 .

[26]  R. Geider,et al.  Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis , 2002 .

[27]  B. Quéguiner,et al.  Resource limitation of phytoplankton growth in the Crozet Basin, Subantarctic Southern Ocean , 2002 .

[28]  B. Quéguiner,et al.  Control of phytoplankton growth by iron supply and irradiance in the subantarctic Southern Ocean: Experimental results from the SAZ Project , 2001 .

[29]  B. Quéguiner,et al.  Control of phytoplankton growth by iron and silicic acid availability in the subantarctic Southern Ocean: Experimental results from the SAZ Project , 2001 .

[30]  P. Croot,et al.  Growth rates of large and small Southern Ocean diatoms in relation to availability o iron in natural seawater , 2001 .

[31]  V. Asper,et al.  The influence of phytoplankton assemblage composition on biogeochemical characteristics and cycles in the southern Ross Sea, Antarctica , 2001 .

[32]  P. Boyd,et al.  Phytoplankton processes. Part 2: Rates of primary production and factors controlling algal growth during the Southern Ocean Iron RElease Experiment (SOIREE) , 2001 .

[33]  P. Boyd,et al.  Phytoplankton processes. Part 1: Community structure during the Southern Ocean Iron RElease Experiment (SOIREE) , 2001 .

[34]  Andrew J. Watson,et al.  A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization , 2000, Nature.

[35]  D. M. Nelson,et al.  Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean , 2000 .

[36]  V. Smetácek,et al.  Colonies of Phaeocystis globosa are protected by a thin but tough skin , 1999 .

[37]  P. Boyd,et al.  Role of iron, light, and silicate in controlling algal biomass in subantarctic waters SE of New Zealand , 1999 .

[38]  D. H. Robinson,et al.  Phytoplankton community structure and the drawdown of nutrients and CO2 in the southern ocean , 1999, Science.

[39]  H. D. Baar,et al.  The Role of Iron in Plankton Ecology and Carbon Dioxide Transfer of the Global Oceans , 1999 .

[40]  D. Hutchins,et al.  Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime , 1998, Nature.

[41]  Shigenobu Takeda,et al.  Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters , 1998, Nature.

[42]  W. Sunda,et al.  Interrelated influence of iron, light and cell size on marine phytoplankton growth , 1997, Nature.

[43]  L. Goeyens,et al.  Nutrient anomalies in Fragilariopsis kerguelensis blooms, iron deficiency and the nitrate/phosphate ratio (A. C. Redfield) of the Antarctic Ocean , 1997 .

[44]  W. Sunda,et al.  Iron uptake and growth limitation in oceanic and coastal phytoplankton , 1995 .

[45]  F. Wilkerson,et al.  The role of a silicate pump in driving new production , 1995 .

[46]  R. Crawford The role of sex in the sedimentation of a marine diatom bloom , 1995 .

[47]  N. Welschmeyer Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments , 1994 .

[48]  F. Morel,et al.  The equatorial Pacific Ocean: Grazer-controlled phytoplankton populations in an iron-limited ecosystem1 , 1994 .

[49]  H. D. Baar,et al.  Metal enrichment experiments in the Weddell-Scotia Seas: Effects of iron and manganese on various plankton communities , 1991 .

[50]  J. Cullen Hypotheses to explain high-nutrient conditions in the open sea , 1991 .

[51]  F. Morel,et al.  Iron nutrition of phytoplankton and its possible importance in the ecology of ocean regions with hight nutrient and low biomass , 1991 .

[52]  S. Fitzwater,et al.  Iron in Antarctic waters , 1990, Nature.

[53]  John H. Martin glacial-interglacial Co2 change : the iron hypothesis , 1990 .

[54]  M. Brzezinski,et al.  THE Si:C:N RATIO OF MARINE DIATOMS: INTERSPECIFIC VARIABILITY AND THE EFFECT OF SOME ENVIRONMENTAL VARIABLES 1 , 1985 .

[55]  L. Burckle Ecology and paleoecology of the marine diatomEucampia antarctica (Castr.) Mangin , 1984 .

[56]  Ann E. Gargett,et al.  Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean , 1983 .