Hybrid Quantum Device Based on N V Centers in Diamond Nanomechanical Resonators Plus Superconducting Waveguide Cavities

We propose and analyze a hybrid device by integrating a microscale diamond beam with a single built-in nitrogen-vacancy (NV) center spin to a superconducting coplanar waveguide (CPW) cavity. We find that under an ac electric field the quantized motion of the diamond beam can strongly couple to the single cavity photons via dielectric interaction. Together with the strong spin-motion interaction via a large magnetic field gradient, it provides a hybrid quantum device where the dia- mond resonator can strongly couple both to the single microwave cavity photons and to the single NV center spin. This enables coherent information transfer and effective coupling between the NV spin and the CPW cavity via mechanically dark polaritons. This hybrid spin-electromechanical de- vice, with tunable couplings by external fields, offers a realistic platform for implementing quantum information with single NV spins, diamond mechanical resonators, and single microwave photons.

[1]  Nanomechanical resonant structures in single-crystal diamond , 2013, 1309.1834.

[2]  M. Leijnse,et al.  Coupling spin qubits via superconductors. , 2013, Physical review letters.

[3]  A S Sørensen,et al.  Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. , 2010, Physical review letters.

[4]  Thomas Faust,et al.  Coherent control of a classical nanomechanical two-level system , 2012, Nature Physics.

[5]  Magnetic ordering of nitrogen-vacancy centers in diamond via resonator-mediated coupling , 2015, 1503.07625.

[6]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[7]  R J Schoelkopf,et al.  Quantum computing with an electron spin ensemble. , 2009, Physical review letters.

[8]  J. R. Petta,et al.  Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier , 2015, 1502.01283.

[9]  Klaus Mølmer,et al.  Holographic quantum computing. , 2008, Physical review letters.

[10]  C. Degen,et al.  Single-crystal diamond nanomechanical resonators with quality factors exceeding one million , 2012, Nature Communications.

[11]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[12]  S. Seidelin,et al.  A single NV defect coupled to a nanomechanical oscillator , 2011, 1112.1291.

[13]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[14]  Amrit De,et al.  Spin transfer of quantum information between Majorana modes and a resonator. , 2014, Physical review letters.

[15]  Giovanna Morigi,et al.  Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. , 2014, Physical review letters.

[16]  G. Milburn,et al.  Quantum interface between an electrical circuit and a single atom. , 2011, Physical review letters.

[17]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[18]  P. Appel,et al.  Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. , 2014, Physical review letters.

[19]  P. Rabl,et al.  Measuring mechanical motion with a single spin , 2012, 1205.6740.

[20]  Diamond nanobeam waveguide optomechanics , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[21]  Spin-Orbit Qubit on a Multiferroic Insulator in a Superconducting Resonator , 2013, 1312.5159.

[22]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[23]  Michael Marthaler,et al.  Strong coupling of spin qubits to a transmission line resonator. , 2011, Physical review letters.

[24]  R J Schoelkopf,et al.  Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. , 2006, Physical review letters.

[25]  Ling Hao,et al.  Circuit cavity electromechanics in the strong-coupling regime , 2014 .

[26]  C. Regal,et al.  From cavity electromechanics to cavity optomechanics , 2010, 1010.4056.

[27]  Yun-Feng Xiao,et al.  Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. , 2013, Physical review letters.

[28]  J. Schmiedmayer,et al.  Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. , 2008, Physical review letters.

[29]  T. Kontos,et al.  Spin quantum bit with ferromagnetic contacts for circuit QED. , 2010, Physical review letters.

[30]  Patrik Rath,et al.  Diamond-integrated optomechanical circuits , 2013, Nature Communications.

[31]  M. V. Gurudev Dutt,et al.  Strong Magnetic Coupling Between an Electronic Spin Qubit and a Mechanical Resonator , 2008, 0806.3606.

[32]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[33]  Zhang-qi Yin,et al.  Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling , 2013, 1305.1701.

[34]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[35]  Ari Sihvola,et al.  Dielectric polarizability of circular cylinder , 2005 .

[36]  A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. , 2008, Physical review letters.

[37]  M. D. Lukin,et al.  Mesoscopic cavity quantum electrodynamics with quantum dots , 2004 .

[38]  B. Shore,et al.  Coherent population transfer among quantum states of atoms and molecules , 1998 .

[39]  M. Feng,et al.  Deterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantilever , 2009, 0907.5550.

[40]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[41]  A. Tünnermann,et al.  Adiabatic transfer of light via a continuum in optical waveguides. , 2009, Optics letters.

[42]  M. Hartmann,et al.  Quantum information processing with nanomechanical qubits. , 2012, Physical review letters.

[43]  Z. Kurucz,et al.  Parametric amplification of the mechanical vibrations of a suspended nanowire by magnetic coupling to a Bose-Einstein condensate. , 2013, Physical review letters.

[44]  Samuel P. Benz,et al.  Spin-transfer torque switching in nanopillar superconducting-magnetic hybrid Josephson junctions , 2014 .

[45]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[46]  L Frunzio,et al.  High-cooperativity coupling of electron-spin ensembles to superconducting cavities. , 2010, Physical review letters.

[47]  J. Mompart,et al.  Three-level atom optics via the tunneling interaction , 2004 .

[48]  J. Teufel,et al.  Circuit cavity electromechanics in the strong-coupling regime , 2010, Nature.

[49]  Hideaki Takashima,et al.  Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices. , 2014, Optics express.

[50]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[51]  P. Zoller,et al.  Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing. , 2013, Physical review letters.

[52]  R. Arora,et al.  Coupled Slot Line Field Components , 1982 .

[53]  Kenneth W. Lee,et al.  Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator , 2014, Nature communications.

[54]  T J Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[55]  S. Barrett,et al.  Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond , 2009, 0912.3586.

[56]  Eva M. Weig,et al.  Universal transduction scheme for nanomechanical systems based on dielectric forces , 2009, Nature.

[57]  P. Ovartchaiyapong,et al.  High quality factor single-crystal diamond mechanical resonators , 2012 .

[58]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[59]  Fuli Li,et al.  Controlled generation of field squeezing with cold atomic clouds coupled to a superconducting transmission line resonator , 2010, 1002.4953.

[60]  F Troiani,et al.  Quantum information processing with hybrid spin-photon qubit encoding. , 2013, Physical review letters.

[61]  Three level atom optics in dipole traps and waveguides , 2005, quant-ph/0511195.

[62]  S Onoda,et al.  Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. , 2011, Physical review letters.

[63]  Klaus Mølmer,et al.  Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble. , 2013, Physical review letters.

[64]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[65]  R. Fazio,et al.  Putting mechanics into circuit quantum electrodynamics , 2012 .

[66]  P. Rabl,et al.  Implementation of the Dicke lattice model in hybrid quantum system arrays. , 2014, Physical review letters.

[67]  R. Simons Coplanar waveguide circuits, components, and systems , 2001 .

[68]  Sungkun Hong,et al.  Coherent, mechanical control of a single electronic spin. , 2012, Nano letters.

[69]  D. Rugar,et al.  Nuclear magnetic resonance imaging with 90-nm resolution. , 2007, Nature Nanotechnology.

[70]  D. Petrosyan,et al.  Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators. , 2008, Physical review letters.

[71]  S. Bhave,et al.  Mechanical spin control of nitrogen-vacancy centers in diamond. , 2013, Physical review letters.

[72]  J. Schmiedmayer,et al.  Cavity QED with magnetically coupled collective spin states. , 2011, Physical review letters.

[73]  Cheng-Zu Li,et al.  Controllable strong coupling between individual spin qubits and a transmission line resonator via nanomechanical resonators , 2012 .

[74]  P. Zoller,et al.  A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators , 2006 .

[75]  M. Lukin,et al.  Capacitive coupling of atomic systems to mesoscopic conductors. , 2003, Physical review letters.