Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics
暂无分享,去创建一个
[1] Herbert Koch,et al. Well-posedness for the Navier–Stokes Equations , 2001 .
[2] J. Moser. A Harnack inequality for parabolic di2erential equations , 1964 .
[3] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[4] Antonio Córdoba,et al. Communications in Mathematical Physics A Maximum Principle Applied to Quasi-Geostrophic Equations , 2004 .
[5] Andrew J. Majda,et al. Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .
[6] F. Ricci. Book Review: Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals , 1999 .
[7] A. Volberg,et al. Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2007 .
[8] T. Clune,et al. Modeling the Earth's dynamo , 2013 .
[9] J. Serrin,et al. Local behavior of solutions of quasilinear parabolic equations , 1967 .
[10] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[11] N. Lerner,et al. Flow of Non-Lipschitz Vector-Fields and Navier-Stokes Equations , 1995 .
[12] L. Silvestre,et al. On divergence-free drifts , 2010, 1010.6025.
[13] Mariano Giaquinta,et al. Introduction to Regularity Theory for Nonlinear Elliptic Systems , 1993 .
[14] Qi S. Zhang. A Strong Regularity Result for Parabolic Equations , 2004 .
[15] J. Nash. Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .
[16] L. Caffarelli,et al. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics , 2010 .
[17] H. K. Moffatt. Magnetostrophic Turbulence and the Geodynamo , 2008 .
[18] Peter Constantin,et al. Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation , 2008 .
[19] Hantaek Bae. Navier-Stokes equations , 1992 .
[20] Peter Constantin,et al. Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations , 2007, math/0701594.
[21] Charles Fefferman,et al. Growth of solutions for QG and 2D Euler equations , 2001 .
[22] Alexis Vasseur,et al. A new proof of partial regularity of solutions to Navier-Stokes equations , 2007 .
[23] Jiahong Wu,et al. Global Solutions of the 2D Dissipative Quasi-Geostrophic Equation in Besov Spaces , 2005, SIAM J. Math. Anal..
[24] V. Vicol,et al. Higher Regularity of Hölder Continuous Solutions of Parabolic Equations with Singular Drift Velocities , 2011, 1102.0585.
[25] Julio C. Gutiérrez-Vega,et al. Theory and numerical analysis of the Mathieu functions , 2008 .
[26] H. Osada. Diffusion processes with generators of generalized divergence form , 1987 .
[27] Local estimates on two linear parabolic equations with singular coefficients , 2006, 1905.13329.
[28] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[29] Michael Ruzhansky,et al. On the Toroidal Quantization of Periodic Pseudo-Differential Operators , 2009 .
[30] Peter Constantin,et al. Global regularity for a modified critical dissipative quasi-geostrophic equation , 2008, 0803.1318.
[31] Y. Semenov. Regularity theorems for parabolic equations , 2006 .
[32] Luis Silvestre,et al. Eventual regularization for the slightly supercritical quasi-geostrophic equation , 2008, 0812.4901.
[33] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[34] G. M. Lieberman. SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .
[35] W. McLean. Local and Global Descriptions of Periodic Pseudodifferential Operators , 1991 .
[36] L. Caffarelli,et al. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.