Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics

Abstract We use De Giorgi techniques to prove Holder continuity of weak solutions to a class of drift-diffusion equations, with L 2 initial data and divergence free drift velocity that lies in L t ∞ BMO x − 1 . We apply this result to prove global regularity for a family of active scalar equations which includes the advection–diffusion equation that has been proposed by Moffatt in the context of magnetostrophic turbulence in the Earthʼs fluid core.

[1]  Herbert Koch,et al.  Well-posedness for the Navier–Stokes Equations , 2001 .

[2]  J. Moser A Harnack inequality for parabolic di2erential equations , 1964 .

[3]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[4]  Antonio Córdoba,et al.  Communications in Mathematical Physics A Maximum Principle Applied to Quasi-Geostrophic Equations , 2004 .

[5]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[6]  F. Ricci Book Review: Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals , 1999 .

[7]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2007 .

[8]  T. Clune,et al.  Modeling the Earth's dynamo , 2013 .

[9]  J. Serrin,et al.  Local behavior of solutions of quasilinear parabolic equations , 1967 .

[10]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[11]  N. Lerner,et al.  Flow of Non-Lipschitz Vector-Fields and Navier-Stokes Equations , 1995 .

[12]  L. Silvestre,et al.  On divergence-free drifts , 2010, 1010.6025.

[13]  Mariano Giaquinta,et al.  Introduction to Regularity Theory for Nonlinear Elliptic Systems , 1993 .

[14]  Qi S. Zhang A Strong Regularity Result for Parabolic Equations , 2004 .

[15]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[16]  L. Caffarelli,et al.  The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics , 2010 .

[17]  H. K. Moffatt Magnetostrophic Turbulence and the Geodynamo , 2008 .

[18]  Peter Constantin,et al.  Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation , 2008 .

[19]  Hantaek Bae Navier-Stokes equations , 1992 .

[20]  Peter Constantin,et al.  Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations , 2007, math/0701594.

[21]  Charles Fefferman,et al.  Growth of solutions for QG and 2D Euler equations , 2001 .

[22]  Alexis Vasseur,et al.  A new proof of partial regularity of solutions to Navier-Stokes equations , 2007 .

[23]  Jiahong Wu,et al.  Global Solutions of the 2D Dissipative Quasi-Geostrophic Equation in Besov Spaces , 2005, SIAM J. Math. Anal..

[24]  V. Vicol,et al.  Higher Regularity of Hölder Continuous Solutions of Parabolic Equations with Singular Drift Velocities , 2011, 1102.0585.

[25]  Julio C. Gutiérrez-Vega,et al.  Theory and numerical analysis of the Mathieu functions , 2008 .

[26]  H. Osada Diffusion processes with generators of generalized divergence form , 1987 .

[27]  Local estimates on two linear parabolic equations with singular coefficients , 2006, 1905.13329.

[28]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[29]  Michael Ruzhansky,et al.  On the Toroidal Quantization of Periodic Pseudo-Differential Operators , 2009 .

[30]  Peter Constantin,et al.  Global regularity for a modified critical dissipative quasi-geostrophic equation , 2008, 0803.1318.

[31]  Y. Semenov Regularity theorems for parabolic equations , 2006 .

[32]  Luis Silvestre,et al.  Eventual regularization for the slightly supercritical quasi-geostrophic equation , 2008, 0812.4901.

[33]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[34]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[35]  W. McLean Local and Global Descriptions of Periodic Pseudodifferential Operators , 1991 .

[36]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.