Pion–Pion Interaction in a Soluble Two-Level Nambu–Jona-Lasinio Model

[1]  M. Volkov,et al.  Two photon decays of scalar mesons in the quark NJL model , 2008, 0809.1795.

[2]  B. Loiseau,et al.  ππ AMPLITUDES FITTED TO EXPERIMENTAL DATA AND TO ROY'S EQUATIONS , 2004, hep-ph/0407338.

[3]  M. Buballa NJL-model analysis of dense quark matter , 2004, hep-ph/0402234.

[4]  O. Civitarese,et al.  Schematic model for QCD. I. Low energy meson states , 2003, nucl-th/0302011.

[5]  M. Fiolhais,et al.  Soliton formation in {sigma} models , 1997 .

[6]  A. Blin,et al.  Pion Observables in the Extended NJL Model with Vector and Axial-Vector Mesons , 1995, hep-ph/9506309.

[7]  A. Blin,et al.  Strong and radiative meson decays in a generalized Nambu-Jona-Lasinio model , 1993, hep-ph/9302245.

[8]  M. Lüscher Two-particle states on a torus and their relation to the scattering matrix , 1991 .

[9]  da Providência J,et al.  Time-dependent Hartree-Fock formalism and the excitations of the Dirac sea in the Nambu-Jona-Lasinio model. , 1987, Physical review. D, Particles and fields.

[10]  M. Lüscher Volume dependence of the energy spectrum in massive quantum field theories , 1986 .

[11]  M. Lüscher,et al.  Volume dependence of the energy spectrum in massive quantum field theories , 1986 .

[12]  H. Lipkin,et al.  Validity of many-body approximation methods for a solvable model: (IV). The deformed Hartree-Fock solution , 1966 .

[13]  Harry J. Lipkin,et al.  Validity of many-body approximation methods for a solvable model: (II). Linearization procedures , 1965 .

[14]  H. Lipkin,et al.  Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory , 1965 .

[15]  H. Lipkin,et al.  VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL. III. DIAGRAM SUMMATIONS , 1965 .

[16]  S. Moszkowski Connection between the Nuclear Shell Model and the Unified Model , 1958 .