Cubic Map Algebra Functions for Spatio-Temporal Analysis

We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U. S. vegetation character over various land covers and during different El Niño/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.

[1]  W. P. A. van. Deursen,et al.  Geographical information systems and dynamic models : development and application of a prototype spatial modelling language , 1995 .

[2]  William E. Higgins,et al.  Symmetric region growing , 2003, IEEE Trans. Image Process..

[3]  Michael F. Worboys,et al.  GIS : a computing perspective , 2004 .

[5]  Jeremy L. Mennis,et al.  Derivation and implementation of a semantic GIS data model informed by principles of cognition , 2003, Comput. Environ. Urban Syst..

[6]  G. Langran Time in Geographic Information Systems , 1990 .

[7]  Donna Peuquet,et al.  An Event-Based Spatiotemporal Data Model (ESTDM) for Temporal Analysis of Geographical Data , 1995, Int. J. Geogr. Inf. Sci..

[8]  Patrick Bogaert,et al.  Temporal GIS: Advanced Functions for Field-Based Applications , 2002 .

[9]  Donna Peuquet,et al.  The Role of Knowledge Representation in Geographic Knowledge Discovery: A Case Study , 2003, Trans. GIS.

[10]  Charles R. Dyer,et al.  Interactive visualization of Earth and space science computations , 1994, Computer.

[11]  Max J. Egenhofer,et al.  Identity-based change: a foundation for spatio-temporal knowledge representation , 2000, Int. J. Geogr. Inf. Sci..

[12]  Phaedon C. Kyriakidis,et al.  Geostatistical Space–Time Models: A Review , 1999 .

[13]  Ralf Hartmut Güting,et al.  Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases , 1999, GeoInformatica.

[14]  Venkatesh Raghavan,et al.  Construction and Visualization of a Three Dimensional Geologic Model Using GRASS GIS , 2004, Trans. GIS.

[15]  D. Legates,et al.  Crop identification using harmonic analysis of time-series AVHRR NDVI data , 2002 .

[16]  Hisashi Nakamura,et al.  Fast Spatio-Temporal Data Mining of Large Geophysical Datasets , 1995, KDD.

[17]  Martin Breunig On the way to component-based 3D / 4D geoinformation systems , 2001, Lecture notes in earth sciences.

[18]  Prashant D. Sardeshmukh,et al.  The effect of ENSO on the intraseasonal variance of surface temperatures in winter , 2000 .

[19]  Donna Peuquet,et al.  Making Space for Time: Issues in Space-Time Data Representation , 1999, Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99.

[20]  Mahmut T. Kandemir,et al.  Improving the performance of out-of-core computations , 1997, Proceedings of the 1997 International Conference on Parallel Processing (Cat. No.97TB100162).

[21]  Norman W. Paton,et al.  Tripod: A Comprehensive Model for Spatial and Aspatial Historical Objects , 2001, ER.

[22]  Ioannis Pitas,et al.  Memory efficient propagation-based watershed and influence zone algorithms for large images , 2000, IEEE Trans. Image Process..

[23]  C. Tomlin Geographic information systems and cartographic modeling , 1990 .

[24]  Jeremy Mennis,et al.  Exploring relationships between ENSO and vegetation vigour in the south-east USA using AVHRR data , 2001 .

[25]  Hiroshi Hanaizumi,et al.  A change detection method for remotely sensed multispectral and multitemporal images using 3-D segmentation , 2001, IEEE Trans. Geosci. Remote. Sens..

[26]  Helen Couclelis,et al.  Map Dynamics Integrating Cellular Automata and GIS Through Geo-Algebra , 1997, Int. J. Geogr. Inf. Sci..

[27]  Norman W. Paton,et al.  Tripod: a comprehensive system for the management of spatial and aspatial historical objects , 2001, GIS '01.

[28]  J. Eastman,et al.  Long sequence time series evaluation using standardized principal components , 1993 .

[29]  Roger Y. Anderson,et al.  Harmonic analysis of varve time series , 1963 .

[30]  Michael N. DeMers GIS modeling in raster , 2001 .

[31]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .

[32]  M. Yuan Representing Complex Geographic Phenomena in GIS , 2001 .

[33]  Chester F. Ropelewski,et al.  North American Precipitation and Temperature Patterns Associated with the El Niño/Southern Oscillation (ENSO) , 1986 .

[34]  Michael T. Orchard,et al.  Motion field modeling for video sequences , 1997, IEEE Trans. Image Process..

[35]  Joel H. Saltz,et al.  Compiling Data Intensive Applications with Spatial Coordinates , 2000, LCPC.

[36]  Derek Karssenberg,et al.  Integrating dynamic environmental models in GIS: The development of a Dynamic Modelling language , 1996, Trans. GIS.

[37]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[38]  Robert Marschallinger A voxel visualization and analysis system based on AutoCAD , 1996 .

[39]  INFLUENCE OF ENSO ON MAXIMUM, MINIMUM, AND MEAN TEMPERATURES IN THE SOUTHEAST UNITED STATES , 1996 .

[40]  M. Goodchild,et al.  Geographic Information Systems and Science (second edition) , 2001 .

[41]  Lubos Mitas,et al.  Modelling Spatially and Temporally Distributed Phenomena: New Methods and Tools for GRASS GIS , 1995, Int. J. Geogr. Inf. Sci..

[42]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[43]  Jonathan Raper,et al.  Multidimensional geographic information science , 2000 .

[44]  Jonathan Raper,et al.  Development of a Geomorphological Spatial Model Using Object-Oriented Design , 1995, Int. J. Geogr. Inf. Sci..

[45]  Michael F. Goodchild,et al.  Geographical data modeling , 1992 .

[46]  Michael F. Worboys,et al.  A Unified Model for Spatial and Temporal Information , 1994, Comput. J..