Alpha- and beta-haemoglobin chain induced changes in normal erythrocyte deformability: comparison to beta thalassaemia intermedia and Hb H disease.

The alpha- and beta-thalassaemias are characterized by decreased erythrocyte deformability. To determine what effects excess alpha- and beta-haemoglobin (globin) chains have on cellular and membrane deformability, purified haem-containing alpha- and beta-chains were entrapped within normal erythrocytes. Entrapment of purified alpha-chains in normal erythrocytes resulted in a significant decrease in cellular and membrane deformability similar to that observed in beta-thalassaemia intermedia. The decreased deformability was correlated with alpha-chain membrane deposition, an alteration in membrane proteins and a decrease in membrane reactive thiol groups. These changes in membrane and cellular deformability were time dependent and closely correlated with membrane alpha-chain deposition. The membrane changes and the loss of membrane deformability appeared to account for the loss of cellular deformability in the alpha-chain loaded cells. While both beta-chain loaded and Hb H erythrocytes demonstrated a significant loss of cellular deformability, this loss was less pronounced than in the alpha-chain loaded and beta-thalassaemic cells and may arise from either the increased intracellular viscosity of the beta-chain loaded cells or to the smaller amount of membrane bound globin. In summary, these studies demonstrate that alteration of cellular and membrane deformability occurs very rapidly and as a direct consequence of the autoxidation and membrane binding of the unpaired globin chains.