Modeling of Creep Deformation Behaviour of RAFM Steel

[1]  Y. Lin,et al.  Modeling the creep behavior of 2024-T3 Al alloy , 2013 .

[2]  M. D. Mathew,et al.  Effects of Tungsten and Tantalum on Creep Deformation and Rupture Properties of Reduced Activation Ferritic-Martensitic Steel☆ , 2013 .

[3]  M. D. Mathew,et al.  Creep deformation and rupture behaviour of 9Cr–1W–0.2V–0.06Ta Reduced Activation Ferritic–Martensitic steel , 2012 .

[4]  M. D. Mathew,et al.  Tensile and creep properties of reduced activation ferritic–martensitic steel for fusion energy application , 2011 .

[5]  K. Sawada,et al.  Analysis of long-term creep curves by constitutive equations , 2009 .

[6]  Woo-Gon Kim,et al.  Creep characterization of a Ni-based Hastelloy-X alloy by using theta projection method , 2008 .

[7]  Ashok Saxena,et al.  Creep deformation and rupture behaviour of directionally solidified GTD 111 superalloy , 2006 .

[8]  E. Diegele,et al.  Present development status of EUROFER and ODS-EUROFER for application in blanket concepts , 2005 .

[9]  Baldev Raj,et al.  Low cycle fatigue and creep–fatigue interaction behavior of 316L(N) stainless steel and life prediction by artificial neural network approach , 2003 .

[10]  M. Evans Sensitivity of the theta projection technique to the functional form of the theta interpolation/extrapolation function , 2002 .

[11]  R. Evans,et al.  The θ projection method applied to small strain creep of commercial aluminium alloy , 2001 .

[12]  M. D. Mathew,et al.  Prediction of creep parameters of type 316 stainless steel under service conditions using the π-projection concept , 1992 .