Linear layouts measuring neighbourhoods in graphs
暂无分享,去创建一个
[1] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[2] Paul D. Seymour,et al. Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.
[3] Egon Wanke,et al. k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..
[4] Bruno Courcelle,et al. Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.
[5] Egon Wanke,et al. The Tree-Width of Clique-Width Bounded Graphs Without Kn, n , 2000, WG.
[6] Frank Gurski,et al. Characterizations for co-graphs defined by restricted NLC-width or clique-width operations , 2006, Discret. Math..
[7] Paul D. Seymour,et al. Graphs with small bandwidth and cutwidth , 1989, Discret. Math..
[8] J. B. McLeod. A note on the ε-algorithm , 2005, Computing.
[9] JOSEP DÍAZ,et al. A survey of graph layout problems , 2002, CSUR.
[10] Nancy G. Kinnersley,et al. The Vertex Separation Number of a Graph equals its Path-Width , 1992, Inf. Process. Lett..
[11] Bruno Courcelle,et al. Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..
[12] Bruno Courcelle,et al. The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications , 2003, Theor. Comput. Sci..
[13] Udi Rotics,et al. Proving NP-hardness for clique-width I: non-approximability of sequential clique-width , 2005, Electron. Colloquium Comput. Complex..
[14] Maria J. Serna,et al. Parameterized Complexity for Graph Layout Problems , 2005, Bull. EATCS.
[15] John R. Gilbert,et al. Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.
[16] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[17] Bruno Courcelle,et al. Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..
[18] Egon Wanke,et al. Minimizing NLC-Width is NP-Complete , 2005, WG.
[19] Rolf H. Möhring,et al. Graph Problems Related to Gate Matrix Layout and PLA Folding , 1990 .
[20] Egon Wanke,et al. On the relationship between NLC-width and linear NLC-width , 2005, Theor. Comput. Sci..
[21] Hans L. Bodlaender,et al. Some Classes of Graphs with Bounded Treewidth , 1988, Bull. EATCS.
[22] Bruno Courcelle,et al. Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1991, Theor. Comput. Sci..
[23] H. Bodlaender. Classes of graphs with bounded tree-width , 1986 .
[24] Paul D. Seymour,et al. Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.
[25] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[26] Rolf H. Möhring,et al. The Pathwidth and Treewidth of Cographs , 1990, SIAM J. Discret. Math..
[27] Udi Rotics,et al. Proving NP-hardness for clique-width II: non-approximability of clique-width , 2005, Electron. Colloquium Comput. Complex..