The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes

Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal.

[1]  Mmh,et al.  Studies from the Rockefeller Institute for Medical Research , 1945 .

[2]  R. Lorente de Nó,et al.  A study of nerve physiology. , 1947, Studies from the Rockefeller institute for medical research. Reprints. Rockefeller Institute for Medical Research.

[3]  R. L. Nó,et al.  A Study Of Nerve Physiology , 1947 .

[4]  T. Sears,et al.  A study of the transmission of potentials after hemispherectomy. , 1960, Electroencephalography and clinical neurophysiology.

[5]  W. Walter,et al.  Contingent Negative Variation : An Electric Sign of Sensori-Motor Association and Expectancy in the Human Brain , 1964, Nature.

[6]  H. Jasper,et al.  INTRACELLULAR OSCILLATORY RHYTHMS IN PYRAMIDAL TRACT NEURONES IN THE CAT. , 1965, Electroencephalography and clinical neurophysiology.

[7]  O D Creutzfeldt,et al.  Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and erpicortical stimulation. , 1966, Electroencephalography and clinical neurophysiology.

[8]  H. Kornhuber,et al.  Cerebral potentials accompanying voluntary movements in man: readiness potential and reafferent potentials. , 1969, Electroencephalography and Clinical Neurophysiology.

[9]  R. Elul The genesis of the EEG. , 1971, International review of neurobiology.

[10]  D L Jewett,et al.  Auditory-evoked far fields averaged from the scalp of humans. , 1971, Brain : a journal of neurology.

[11]  C. Nicholson,et al.  Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. , 1975, Journal of neurophysiology.

[12]  D. Prince,et al.  Intradendritic recordings from hippocampal neurons. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Robert W. Dykes,et al.  Conductivity in the somatosensory cortex of the cat — evidence for cortical anisotropy , 1979, Brain Research.

[14]  D. Prince,et al.  A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. , 1980, Journal of neurophysiology.

[15]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[16]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[17]  H. Petsche,et al.  The contribution of the cortical layers to the generation of the EEG: field potential and current source density analyses in the rabbit's visual cortex. , 1982, Electroencephalography and clinical neurophysiology.

[18]  P. Rappelsberger,et al.  On the search for the sources of the electroencephalogram , 1984, Neuroscience.

[19]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[20]  G. Karmos,et al.  Electrical activity of the archicortex , 1986 .

[21]  K. Krnjević,et al.  Ephaptically generated potentials in CA1 neurons of rat's hippocampus in situ. , 1986, Journal of neurophysiology.

[22]  L. Kellényi,et al.  Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: Current-source density analysis, effects of urethane and atropine , 1986, Brain Research.

[23]  C. Nicholson,et al.  Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. , 1986, The Journal of physiology.

[24]  Margaret N. Shouse Electrical Activity of Archicortex , 1986 .

[25]  Johan F. Storm,et al.  Temporal integration by a slowly inactivating K+ current in hippocampal neurons , 1988, Nature.

[26]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[27]  G. Buzsáki,et al.  Nucleus basalis and thalamic control of neocortical activity in the freely moving rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  H Korn,et al.  Electrical field effects: their relevance in central neural networks. , 1989, Physiological reviews.

[29]  C. Koch,et al.  Synaptic Background Activity Influences Spatiotemporal Integration in Single Pyramidal Cells. , 1991, The Biological bulletin.

[30]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[31]  C. Y. Yim,et al.  Intrinsic membrane potential oscillations in hippocampal neurons in vitro , 1991, Brain Research.

[32]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[33]  W. Pritchard,et al.  The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. , 1992, The International journal of neuroscience.

[34]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[35]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[36]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  G. Buzsáki,et al.  Cerebellar neuronal activity correlates with spike and wave EEG patterns in the rat , 1993, Epilepsy Research.

[38]  D. Tucker Spatial sampling of head electrical fields: the geodesic sensor net. , 1993, Electroencephalography and clinical neurophysiology.

[39]  C. Rosenberg,et al.  Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 3rd Ed. , 1994 .

[40]  D. Kleinfeld,et al.  Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy , 1994, Journal of Neuroscience Methods.

[41]  D. Contreras,et al.  Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  J. Jefferys,et al.  Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. , 1995, Physiological reviews.

[43]  R. Clay Reid,et al.  Visually evoked calcium action potentials in cat striate cortex , 1995, Nature.

[44]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  G. Buzsáki,et al.  Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  B. Connors,et al.  Short-Term Plasticity of a Thalamocortical Pathway Dynamically Modulated by Behavioral State , 1996, Science.

[48]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[49]  Y. Okada,et al.  Genesis of MEG signals in a mammalian CNS structure. , 1997, Electroencephalography and clinical neurophysiology.

[50]  G Buzsáki,et al.  Cellular–Synaptic Generation of Sleep Spindles, Spike-and-Wave Discharges, and Evoked Thalamocortical Responses in the Neocortex of the Rat , 1997, The Journal of Neuroscience.

[51]  Ehud Y Isacoff,et al.  A Genetically Encoded Optical Probe of Membrane Voltage , 1997, Neuron.

[52]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[53]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[54]  G. Buzsáki,et al.  Gamma Oscillations in the Entorhinal Cortex of the Freely Behaving Rat , 1998, The Journal of Neuroscience.

[55]  G. Buzsáki,et al.  Dendritic Spikes Are Enhanced by Cooperative Network Activity in the Intact Hippocampus , 1998, The Journal of Neuroscience.

[56]  Properties of a Neuronal and Network Pacemaker , 1998 .

[57]  S. Goldman,et al.  Astrocyte-mediated potentiation of inhibitory synaptic transmission , 1998, Nature Neuroscience.

[58]  D. McCormick,et al.  H-Current Properties of a Neuronal and Network Pacemaker , 1998, Neuron.

[59]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[60]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[61]  M. Steriade Corticothalamic resonance, states of vigilance and mentation , 2000, Neuroscience.

[62]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[63]  F. G. Pike,et al.  Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents , 2000, The Journal of physiology.

[64]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[65]  J. Csicsvari,et al.  Ensemble Patterns of Hippocampal CA3-CA1 Neurons during Sharp Wave–Associated Population Events , 2000, Neuron.

[66]  Joel L. Davis,et al.  Neuronal ensembles : strategies for recording and decoding , 2000 .

[67]  J. Csicsvari,et al.  Intracellular features predicted by extracellular recordings in the hippocampus in vivo. , 2000, Journal of neurophysiology.

[68]  D. McCormick,et al.  On the cellular and network bases of epileptic seizures. , 2001, Annual review of physiology.

[69]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[70]  M. Kahana,et al.  Theta returns , 2001, Current Opinion in Neurobiology.

[71]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[72]  T. Sejnowski,et al.  Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. , 2003, Physiological reviews.

[73]  M. Steriade Neuronal Substrates of Sleep and Epilepsy , 2003 .

[74]  G. Buzsáki,et al.  Hippocampal network patterns of activity in the mouse , 2003, Neuroscience.

[75]  D. Barth,et al.  Submillisecond Synchronization of Fast Electrical Oscillations in Neocortex , 2003, The Journal of Neuroscience.

[76]  H. Katsumaru,et al.  Gap junctions on GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus (CA1 region) , 2004, Experimental Brain Research.

[77]  W. Freeman Origin, structure, and role of background EEG activity. Part 2. Analytic phase , 2004, Clinical Neurophysiology.

[78]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[79]  Walter J. Freeman,et al.  Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude , 2004, Clinical Neurophysiology.

[80]  J. Jefferys,et al.  Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro , 2004, The Journal of physiology.

[81]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[82]  Amiram Grinvald,et al.  VSDI: a new era in functional imaging of cortical dynamics , 2004, Nature Reviews Neuroscience.

[83]  E Niedermeyer,et al.  “Mu Rhythm Status” and Clinical Correlates , 2004, Clinical EEG and neuroscience.

[84]  E. Niedermeyer,et al.  The electrocerebellogram. , 2004, Clinical EEG and neuroscience.

[85]  M. Bennett,et al.  Electrical Coupling and Neuronal Synchronization in the Mammalian Brain , 2004, Neuron.

[86]  T. Bliss,et al.  Unit analysis of hippocampal population spikes , 2004, Experimental Brain Research.

[87]  Miles A Whittington,et al.  Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. , 2004, Annual review of neuroscience.

[88]  J. Palva,et al.  Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[89]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[90]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[91]  G. Buzsáki,et al.  Interaction between neocortical and hippocampal networks via slow oscillations. , 2005, Thalamus & related systems.

[92]  Walter J. Freeman,et al.  Origin, structure, and role of background EEG activity. Part 3. Neural frame classification , 2005, Clinical Neurophysiology.

[93]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[94]  B. Connors,et al.  Connexon connexions in the thalamocortical system. , 2005, Progress in brain research.

[95]  A. Engel,et al.  Invasive recordings from the human brain: clinical insights and beyond , 2005, Nature Reviews Neuroscience.

[96]  Giles R. Scuderi,et al.  The Basic Principles , 2006 .

[97]  P. Olejniczak,et al.  Neurophysiologic Basis of EEG , 2006, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[98]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[99]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[100]  Klas H. Pettersen,et al.  Current-source density estimation based on inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conductivity discontinuities , 2006, Journal of Neuroscience Methods.

[101]  P. Nunez,et al.  Source analysis of EEG oscillations using high-resolution EEG and MEG. , 2006, Progress in brain research.

[102]  C. Koch,et al.  On the origin of the extracellular action potential waveform: A modeling study. , 2006, Journal of neurophysiology.

[103]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[104]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[105]  J. Kaas,et al.  Cellular scaling rules for primate brains , 2007, Proceedings of the National Academy of Sciences.

[106]  Rajesh P. N. Rao,et al.  Spectral Changes in Cortical Surface Potentials during Motor Movement , 2007, The Journal of Neuroscience.

[107]  N. Logothetis,et al.  In Vivo Measurement of Cortical Impedance Spectrum in Monkeys: Implications for Signal Propagation , 2007, Neuron.

[108]  Klas H. Pettersen,et al.  Laminar population analysis: estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. , 2007, Journal of neurophysiology.

[109]  Gaute T. Einevoll,et al.  Estimation of population firing rates and current source densities from laminar electrode recordings , 2008, Journal of Computational Neuroscience.

[110]  J. Deans,et al.  Sensitivity of coherent oscillations in rat hippocampus to AC electric fields , 2007, The Journal of physiology.

[111]  Yuzhuo Su,et al.  Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects , 2007, The Journal of Neuroscience.

[112]  Giorgio A. Ascoli,et al.  Effects of Synaptic Synchrony on the Neuronal Input-Output Relationship , 2008, Neural Computation.

[113]  B. Nolan Boosting slow oscillations during sleep potentiates memory , 2008 .

[114]  A. Graybiel Habits, rituals, and the evaluative brain. , 2008, Annual review of neuroscience.

[115]  Marcus Kaiser,et al.  Temporal Interactions between Cortical Rhythms , 2008, Front. Neurosci..

[116]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[117]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[118]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[119]  Sean M Montgomery,et al.  Theta and Gamma Coordination of Hippocampal Networks during Waking and Rapid Eye Movement Sleep , 2008, The Journal of Neuroscience.

[120]  Daryl R Kipke,et al.  Advanced Neurotechnologies for Chronic Neural Interfaces: New Horizons and Clinical Opportunities , 2008, The Journal of Neuroscience.

[121]  Arthur Gretton,et al.  Inferring spike trains from local field potentials. , 2008, Journal of neurophysiology.

[122]  Biyu J. He,et al.  Electrophysiological correlates of the brain's intrinsic large-scale functional architecture , 2008, Proceedings of the National Academy of Sciences.

[123]  C. Bédard,et al.  Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. , 2008, Biophysical journal.

[124]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[125]  E. Moser,et al.  Faculty Opinions recommendation of Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. , 2009 .

[126]  A. Trevelyan The Direct Relationship between Inhibitory Currents and Local Field Potentials , 2009, The Journal of Neuroscience.

[127]  C. Schroeder,et al.  Low-frequency neuronal oscillations as instruments of sensory selection , 2009, Trends in Neurosciences.

[128]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.

[129]  C. Koch,et al.  Neuronal Shot Noise and Brownian 1/f2 Behavior in the Local Field Potential , 2008, PloS one.

[130]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[131]  Jeffrey G. Ojemann,et al.  Power-Law Scaling in the Brain Surface Electric Potential , 2009, PLoS Comput. Biol..

[132]  Jeremy R. Manning,et al.  Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans , 2009, The Journal of Neuroscience.

[133]  D. McCormick,et al.  Endogenous Electric Fields May Guide Neocortical Network Activity , 2010, Neuron.

[134]  John S Ebersole,et al.  Combining MEG and EEG Source Modeling in Epilepsy Evaluations , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[135]  Sean M Montgomery,et al.  The Effect of Spatially Inhomogeneous Extracellular Electric Fields on Neurons , 2010, The Journal of Neuroscience.

[136]  Partha P. Mitra,et al.  Chronux: A platform for analyzing neural signals , 2010, Journal of Neuroscience Methods.

[137]  Gaute T. Einevoll,et al.  Intrinsic dendritic filtering gives low-pass power spectra of local field potentials , 2010, Journal of Computational Neuroscience.

[138]  R. Kawashima,et al.  An evaluation of the conductivity profile in the somatosensory barrel cortex of Wistar rats. , 2010, Journal of neurophysiology.

[139]  Walther Akemann,et al.  Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins , 2010, Nature Methods.

[140]  K. Koepsell,et al.  Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies , 2010, Proceedings of the National Academy of Sciences.

[141]  G. Buzsáki,et al.  Intrinsic Circuit Organization and Theta–Gamma Oscillation Dynamics in the Entorhinal Cortex of the Rat , 2010, The Journal of Neuroscience.

[142]  R. Knight,et al.  The functional role of cross-frequency coupling , 2010, Trends in Cognitive Sciences.

[143]  Ivan Cohen,et al.  Unitary inhibitory field potentials in the CA3 region of rat hippocampus , 2010, The Journal of physiology.

[144]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[145]  Claude Bédard,et al.  Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media , 2010, Journal of Computational Neuroscience.

[146]  György Buzsáki,et al.  Neural Syntax: Cell Assemblies, Synapsembles, and Readers , 2010, Neuron.

[147]  Jessica A. Cardin,et al.  Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2 , 2010, Nature Protocols.

[148]  Claude Bédard,et al.  Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media , 2010, Journal of Computational Neuroscience.

[149]  C. Koch,et al.  Transcranial Electric Stimulation Entrains Cortical Neuronal Populations in Rats , 2010, The Journal of Neuroscience.

[150]  Dennis L Barbour,et al.  Nonuniform High-Gamma (60–500 Hz) Power Changes Dissociate Cognitive Task and Anatomy in Human Cortex , 2011, The Journal of Neuroscience.

[151]  Jiangang Du,et al.  Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes , 2011, PloS one.

[152]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[153]  A. Riehle,et al.  The Local Field Potential Reflects Surplus Spike Synchrony , 2010, Cerebral cortex.

[154]  Rafael Yuste,et al.  Astrocytic regulation of cortical UP states , 2011, Proceedings of the National Academy of Sciences.

[155]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[156]  Vincenzo Crunelli,et al.  Infraslow (<0.1 Hz) oscillations in thalamic relay nuclei basic mechanisms and significance to health and disease states. , 2011, Progress in brain research.

[157]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[158]  C. Schroeder,et al.  How Local Is the Local Field Potential? , 2011, Neuron.

[159]  Theodoros P. Zanos,et al.  Removal of spurious correlations between spikes and local field potentials. , 2011, Journal of neurophysiology.

[160]  Klas H. Pettersen,et al.  Modeling the Spatial Reach of the LFP , 2011, Neuron.

[161]  Alain Destexhe,et al.  Non-homogeneous extracellular resistivity affects the current-source density profiles of up–down state oscillations , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[162]  Jeremy R. Manning,et al.  Oscillatory patterns in temporal lobe reveal context reinstatement during memory search , 2011, Proceedings of the National Academy of Sciences.

[163]  Robert T. Knight,et al.  Cortical Spatio-temporal Dynamics Underlying Phonological Target Detection in Humans , 2011, Journal of Cognitive Neuroscience.

[164]  Giulio Tononi,et al.  Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. , 2011, Progress in brain research.

[165]  Christof Koch,et al.  Ephaptic coupling of cortical neurons , 2011, Nature Neuroscience.

[166]  I. Fried,et al.  Regional Slow Waves and Spindles in Human Sleep , 2011, Neuron.