Single-Molecule Activation and Quantification of Mechanically Triggered Palladium-Carbene Bond Dissociation.

Metal-complexed N-heterocyclic carbene (NHC) mechanophores are latent reactants and catalysts for a range of mechanically driven chemical responses, but mechanochemical scission of the metal-NHC bond has not been experimentally characterized. Here we report the single-molecule force spectroscopy of ligand dissociation from a pincer NHC-pyridine-NHC Pd(II) complex. The force-coupled rate constant for ligand dissociation reaches 50 s-1 at forces of approximately 930 pN. Experimental and computational observations support a dissociative, rather than associative, mechanism of ligand displacement, with rate-limiting scission of the Pd-NHC bond followed by rapid dissociation of the pyridine moiety from Pd.

[1]  M. Robb,et al.  Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry. , 2020, Journal of the American Chemical Society.

[2]  V. M. Chernyshev,et al.  The key role of R–NHC coupling (R = C, H, heteroatom) and M–NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species , 2020, Chemical science.

[3]  Min Zhang,et al.  Mechanical activation of polymers containing two adjacent mechanophores , 2020 .

[4]  R. Göstl,et al.  Polymer mechanochemistry-enabled pericyclic reactions , 2020 .

[5]  V. M. Chernyshev,et al.  Preventing Pd–NHC bond cleavage and switching from nano-scale to molecular catalytic systems: amines and temperature as catalyst activators , 2020 .

[6]  Min Zhang,et al.  A Catenane as a Mechanical Protecting Group. , 2020, Journal of the American Chemical Society.

[7]  Sangmin Jung,et al.  Mechanical Force Induces Ylide-Free Cycloaddition of Nonscissible Aziridines. , 2020, Angewandte Chemie.

[8]  C. Ziegler,et al.  A Polymer with "Locked" Degradability: Superior Backbone Stability and Accessible Degradability Enabled by Mechanophore Installation. , 2020, Journal of the American Chemical Society.

[9]  W. Binder,et al.  Detection of stress in polymers: mechanochemical activation of CuAAC click reactions in poly(urethane) networks. , 2020, Soft matter.

[10]  Yangju Lin,et al.  Mechanically Gated Degradable Polymers. , 2020, Journal of the American Chemical Society.

[11]  T. Martínez,et al.  The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry , 2020, Nature Chemistry.

[12]  Yangju Lin,et al.  A Latent Mechanoacid for Time-Stamped Mechanochromism and Chemical Signaling in Polymeric Materials. , 2019, Journal of the American Chemical Society.

[13]  Xiaoran Hu,et al.  Mechanically Triggered Small Molecule Release from a Masked Furfuryl Carbonate. , 2019, Journal of the American Chemical Society.

[14]  Min Zhang,et al.  Mechanical Susceptibility of a Rotaxane. , 2019, Journal of the American Chemical Society.

[15]  Huan Zhang,et al.  Mechanochromism and optical remodeling of multi-network elastomers containing anthracene dimers† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02580d , 2019, Chemical science.

[16]  A. Herrmann,et al.  Anti‐Stokes Stress Sensing: Mechanochemical Activation of Triplet–Triplet Annihilation Photon Upconversion , 2019, Angewandte Chemie.

[17]  Murat Yiğit,et al.  Enhanced π-back-donation resulting in the trans labilization of a pyridine ligand in an N-heterocyclic carbene (NHC) PdII precatalyst: a case study. , 2019, Acta crystallographica. Section C, Structural chemistry.

[18]  Tianyu Zhu,et al.  Generalizing metallocene mechanochemistry to ruthenocene mechanophores† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc01347d , 2019, Chemical science.

[19]  L. Cegelski,et al.  Benzoladderene Mechanophores: Synthesis, Polymerization, and Mechanochemical Transformation. , 2019, Journal of the American Chemical Society.

[20]  W. Binder,et al.  Synthesis and Mechanochemical Activity of Peptide-Based Cu(I) Bis(N-heterocyclic carbene) Complexes , 2019, Biomimetics.

[21]  Yi Cao,et al.  Maleimide–thiol adducts stabilized through stretching , 2019, Nature Chemistry.

[22]  Tasuku Nakajima,et al.  Mechanoresponsive self-growing hydrogels inspired by muscle training , 2019, Science.

[23]  T. Martínez,et al.  Multicolor Mechanochromism of a Polymer/Silica Composite with Dual Distinct Mechanophores. , 2019, Journal of the American Chemical Society.

[24]  Nancy R. Sottos,et al.  Mechanical Reactivity of Two Different Spiropyran Mechanophores in Polydimethylsiloxane , 2018, Macromolecules.

[25]  Yangju Lin,et al.  Regiochemical Effects on Mechanophore Activation in Bulk Materials. , 2018, Journal of the American Chemical Society.

[26]  T. Aljohani,et al.  Polymer Mechanochemistry: Manufacturing Is Now a Force to Be Reckoned With , 2018, Chem.

[27]  W. Brittain,et al.  Substituent Effects and Mechanism in a Mechanochemical Reaction. , 2018, Journal of the American Chemical Society.

[28]  R. Boulatov,et al.  Polymer Mechanochemistry: A New Frontier for Physical Organic Chemistry , 2018 .

[29]  Tianyu Zhu,et al.  Quantitative and Mechanistic Mechanochemistry in Ferrocene Dissociation. , 2018, ACS macro letters.

[30]  M. Lattuada,et al.  Getriggerte Freisetzung und Oxidation von Metallionen: Ferrocen als neuer Mechanophor in Polymeren , 2018, Angewandte Chemie.

[31]  Stephen L. Craig,et al.  Empowering mechanochemistry with multi-mechanophore polymer architectures , 2018 .

[32]  V. M. Chernyshev,et al.  Fast and Slow Release of Catalytically Active Species in Metal/NHC Systems Induced by Aliphatic Amines , 2018 .

[33]  C. Weder,et al.  Rotaxanes as Mechanochromic Fluorescent Force Transducers in Polymers , 2018, Journal of the American Chemical Society.

[34]  M. Szostak,et al.  Pd-PEPPSI: a general Pd-NHC precatalyst for Buchwald-Hartwig cross-coupling of esters and amides (transamidation) under the same reaction conditions. , 2017, Chemical communications.

[35]  Philipp Michael,et al.  CuAAC-Based Click Chemistry in Self-Healing Polymers. , 2017, Accounts of chemical research.

[36]  R. Boulatov,et al.  Experimentally realized mechanochemistry distinct from force-accelerated scission of loaded bonds , 2017, Science.

[37]  R. Boulatov,et al.  Experimental Polymer Mechanochemistry and its Interpretational Frameworks. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[38]  S. Craig,et al.  Combined Constant-Force and Constant-Velocity Single-Molecule Force Spectroscopy of the Conrotatory Ring Opening Reaction of Benzocyclobutene. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  V. M. Chernyshev,et al.  A New Mode of Operation of Pd-NHC Systems Studied in a Catalytic Mizoroki–Heck Reaction , 2017 .

[40]  S. Craig,et al.  Mechanical gating of a mechanochemical reaction cascade , 2016, Nature Communications.

[41]  H. Clausen‐Schaumann,et al.  Mechanochemical Cycloreversion of Cyclobutane Observed at the Single Molecule Level. , 2016, Chemistry.

[42]  K. Blank,et al.  Mechanical Reversibility of Strain-Promoted Azide-Alkyne Cycloaddition Reactions. , 2016, Angewandte Chemie.

[43]  R. Sijbesma,et al.  Probing Force with Mechanobase-Induced Chemiluminescence. , 2016, Angewandte Chemie.

[44]  W. Binder,et al.  A Mechanochemically Triggered "Click" Catalyst. , 2015, Angewandte Chemie.

[45]  Estela Haldón,et al.  Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. , 2015, Organic & biomolecular chemistry.

[46]  S. Craig,et al.  Reactivity and Mechanism of a Mechanically Activated anti-Woodward-Hoffmann-DePuy Reaction. , 2015, Journal of the American Chemical Society.

[47]  S. Craig,et al.  Relative Mechanical Strengths of Weak Bonds in Sonochemical Polymer Mechanochemistry. , 2015, Journal of the American Chemical Society.

[48]  S. Craig,et al.  Force-rate characterization of two spiropyran-based molecular force probes. , 2015, Journal of the American Chemical Society.

[49]  T. Martínez,et al.  Inducing and quantifying forbidden reactivity with single-molecule polymer mechanochemistry. , 2014, Nature chemistry.

[50]  T. Martínez,et al.  A remote stereochemical lever arm effect in polymer mechanochemistry. , 2014, Journal of the American Chemical Society.

[51]  C. Weder,et al.  Mechanochemistry with metallosupramolecular polymers. , 2014, Journal of the American Chemical Society.

[52]  Frank A. Leibfarth,et al.  Strain-Induced Strengthening of the Weakest Link: The Importance of Intermediate Geometry for the Outcome of Mechanochemical Reactions , 2014 .

[53]  P. Hodge Entropically driven ring-opening polymerization of strainless organic macrocycles. , 2014, Chemical reviews.

[54]  Christopher W. Bielawski,et al.  Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry. , 2013, Journal of the American Chemical Society.

[55]  R. Sijbesma,et al.  Mechanocatalytic Polymerization and Cross-Linking in a Polymeric Matrix. , 2013, ACS macro letters.

[56]  Andrew J. Boydston,et al.  "Flex-activated" mechanophores: using polymer mechanochemistry to direct bond bending activation. , 2013, Journal of the American Chemical Society.

[57]  J. Lenhardt,et al.  A backbone lever-arm effect enhances polymer mechanochemistry. , 2013, Nature chemistry.

[58]  R. Sijbesma,et al.  Mechanical activation of a latent olefin metathesis catalyst and persistence of its active species in ROMP , 2012 .

[59]  R. Sijbesma,et al.  Unfolding and Mechanochemical Scission of Supramolecular Polymers Containing a Metal–Ligand Coordination Bond , 2011 .

[60]  A. Lough,et al.  Structure-activity relationship analysis of Pd-PEPPSI complexes in cross-couplings: a close inspection of the catalytic cycle and the precatalyst activation model. , 2010, Chemistry.

[61]  D. Marx,et al.  Unravelling the mechanism of force-induced ring-opening of benzocyclobutenes. , 2009, Chemistry.

[62]  T. Martínez,et al.  First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene. , 2009, Journal of the American Chemical Society.

[63]  R. Sijbesma,et al.  Activating catalysts with mechanical force. , 2009, Nature chemistry.

[64]  R. Sijbesma,et al.  Highly efficient mechanochemical scission of silver-carbene coordination polymers. , 2008, Journal of the American Chemical Society.

[65]  R. Sijbesma,et al.  Selectivity of mechanochemical chain scission in mixed palladium(II) and platinum(II) coordination polymers. , 2008, Chemical communications.

[66]  Nancy R. Sottos,et al.  Biasing reaction pathways with mechanical force , 2007, Nature.

[67]  Cory Valente,et al.  A user-friendly, all-purpose Pd-NHC (NHC=N-heterocyclic carbene) precatalyst for the negishi reaction: a step towards a universal cross-coupling catalyst. , 2006, Chemistry.

[68]  S. Craig,et al.  Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. , 2006, Journal of the American Chemical Society.

[69]  Jeffrey S. Moore,et al.  Ultrasound-Induced Site-Specific Cleavage of Azo-Functionalized Poly(ethylene glycol) , 2005 .

[70]  R. Sijbesma,et al.  Reversible Mechanochemistry of a PdII Coordination Polymer , 2004 .

[71]  M. Beyer,et al.  The mechanical strength of a covalent bond calculated by density functional theory , 2000 .

[72]  Ralph G. Pearson,et al.  419. Kinetics of the reaction of alkyl and aryl compounds of the nickel group with pyridine , 1961 .