Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review.

Numerical methods for the calculation of the acoustic field inside sonoreactors have rapidly emerged in the last 15 years. This paper summarizes some of the most important works on this topic presented in the past, along with the diverse numerical works that have been published since then, reviewing the state of the art from a qualitative point of view. In this sense, we illustrate and discuss some of the models recently developed by the scientific community to deal with some of the complex events that take place in a sonochemical reactor such as the vibration of the reactor walls and the nonlinear phenomena inherent to the presence of ultrasonic cavitation. In addition, we point out some of the upcoming challenges that must be addressed in order to develop a reliable tool for the proper designing of efficient sonoreactors and the scale-up of sonochemical processes.

[1]  C. Campos-Pozuelo,,et al.  Nonlinear ultrasonic propagation in bubbly liquids: a numerical model. , 2008, Ultrasound in medicine & biology.

[2]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[3]  G. Palmisano,et al.  Power Ultrasound in Metal-Assisted Synthesis: From Classical Barbier-like Reactions to Click Chemistry , 2011 .

[4]  Gunther Brenner,et al.  Numerical investigation of sonochemical reactors considering the effect of inhomogeneous bubble clouds on ultrasonic wave propagation , 2012 .

[5]  H. -. Kim,et al.  Effect of ultrasound irradiation on solvent extraction process , 2009 .

[6]  Bruce Cumings,et al.  A short review , 1983 .

[7]  Michael J. Miksis,et al.  Effective equations for wave propagation in bubbly liquids , 1985, Journal of Fluid Mechanics.

[8]  J. Degrève,et al.  Investigation of design parameters in ultrasound reactors with confined channels. , 2013, Ultrasonics sonochemistry.

[9]  R. Pflieger,et al.  Potential applications of sonochemistry in spent nuclear fuel reprocessing: a short review. , 2010, Ultrasonics sonochemistry.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Parag R. Gogate,et al.  Mapping of cavitational activity in high frequency sonochemical reactor , 2010 .

[12]  O. Louisnard A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation. , 2013, Ultrasonics sonochemistry.

[13]  B. Dubus,et al.  Cone-like bubble formation in ultrasonic cavitation field. , 2003, Ultrasonics sonochemistry.

[14]  F. J. Keil,et al.  Modeling of linear pressure fields in sonochemical reactors considering an inhomogeneous density distribution of cavitation bubbles , 1999 .

[15]  N. Riley Acoustic Streaming , 1998 .

[16]  Werner Lauterborn,et al.  Physics of bubble oscillations , 2010 .

[17]  Sonochemistry , 1990, Science.

[18]  E. L. Carstensen,et al.  Propagation of Sound Through a Liquid Containing Bubbles , 1947 .

[19]  A. Szeri,et al.  Water vapour, sonoluminescence and sonochemistry , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Aniruddha B. Pandit,et al.  Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems , 2011 .

[21]  Yukio Kagawa,et al.  Finite element simulation for the design of an ultrasonic cleaning tank , 1989 .

[22]  Timothy G. Leighton,et al.  Experimental and theoretical characterization of sonochemical cells. Part 1. Cylindrical reactors and their use to calculate the speed of sound in aqueous solutions , 2003 .

[23]  John King,et al.  FEM calculation of an acoustic field in a sonochemical reactor. , 2007, Ultrasonics sonochemistry.

[24]  A reduced model of cavitation physics for use in sonochemistry , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  J. Caltagirone,et al.  Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor. , 2000, Ultrasonics sonochemistry.

[26]  A. Gachagan,et al.  Simulation and measurement of nonlinear behavior in a high-power test cell , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  Ying Liu,et al.  Finite element simulation of coupled vibration modes in an ultrasonic cleaning tub: Effect of the presence of a washing object , 2004 .

[28]  Frerich J. Keil,et al.  Modeling of three-dimensional linear pressure fields in sonochemical reactors with homogeneous and inhomogeneous density distributions of cavitation bubbles , 1998 .

[29]  Bertrand Dubus,et al.  Experimental and theoretical investigation of the mean acoustic pressure in the cavitation field. , 2005, Ultrasonics sonochemistry.

[30]  M. Hodnett,et al.  The importance of temperature control in the operation of high power ultrasound reactors , 2009, 2009 38th Annual Symposium of the Ultrasonic Industry Association (UIA).

[31]  C. Campos-Pozuelo,,et al.  Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments. , 2009, Ultrasonics sonochemistry.

[32]  Olivier Louisnard Contribution à l'étude de la propagation des ultrasons en milieu cavitant , 1998 .

[33]  Antonio Iula,et al.  Finite element three-dimensional analysis of the vibrational behaviour of the Langevin-type transducer. , 2002, Ultrasonics.

[34]  P N Gélat,et al.  Characterisation and improvement of a reference cylindrical sonoreactor. , 2012, Ultrasonics sonochemistry.

[35]  E. Zabolotskaya,et al.  EMISSION OF HARMONIC AND COMBINATION-FREQUENCY WAVES BY BUBBLES. , 1973 .

[36]  A. Dogan,et al.  Design parameter investigation of industrial size ultrasound textile treatment bath. , 2009, Ultrasonics sonochemistry.

[37]  Amir Abdullah,et al.  Correct Prediction of the Vibration Behavior of a High Power Ultrasonic Transducer by FEM Simulation , 2008 .

[38]  J. Ludvík,et al.  Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results. , 2007, Ultrasonics sonochemistry.

[39]  K. M. Swamy,et al.  A comparative study on the modeling of sound pressure field distributions in a sonoreactor with experimental investigation , 1999 .

[40]  Dubus,et al.  Numerical modeling of high-power ultrasonic systems: current status and future trends , 2000, Ultrasonics.

[41]  Andrea Prosperetti,et al.  Nonlinear bubble dynamics , 1988 .

[42]  Farid Chemat,et al.  Applications of ultrasound in food technology: Processing, preservation and extraction. , 2011, Ultrasonics sonochemistry.

[43]  Jim Euchner Design , 2014, Catalysis from A to Z.

[44]  R. Sturrock,et al.  Use of ultrasound. , 1993 .

[45]  R. Mettin,et al.  Characterization of an acoustic cavitation bubble structure at 230 kHz. , 2011, Ultrasonics sonochemistry.

[46]  J. González-garcía,et al.  Current topics on sonoelectrochemistry. , 2010, Ultrasonics.

[47]  J. Khim,et al.  Geometric optimization of sonoreactors for the enhancement of sonochemical activity , 2011 .

[48]  S Luther,et al.  Acoustic cavitation structures and simulations by a particle model. , 1999, Ultrasonics sonochemistry.

[49]  O. Louisnard A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures. , 2013, Ultrasonics sonochemistry.

[50]  Andrea Prosperetti,et al.  Linear pressure waves in bubbly liquids: Comparison between theory and experiments , 1989 .

[51]  Eugen J. Skudrzyk,et al.  Simple and Complex Vibratory Systems , 1969 .

[52]  C. Campos-Pozuelo,,et al.  Acoustic cavitation mechanism: a nonlinear model. , 2012, Ultrasonics sonochemistry.

[53]  Jurate Virkutyte,et al.  Low-frequency ultrasound in biotechnology: state of the art. , 2009, Trends in biotechnology.

[54]  V. Montiel,et al.  Effects of ultrasound on the electrodeposition of lead dioxide on glassy carbon electrodes , 1998 .

[55]  L. H. Thompson,et al.  Sonochemistry: Science and Engineering , 1999 .

[56]  A. Gérard,et al.  Acoustic cavitation field prediction at low and high frequency ultrasounds , 1998 .

[57]  Keiji Yasuda,et al.  Numerical simulation of liquid velocity distribution in a sonochemical reactor. , 2013, Ultrasonics sonochemistry.

[58]  Richard T. Lahey,et al.  The design of acoustic resonant chambers by numerical simulation , 2003 .

[59]  Timothy G Leighton,et al.  Experimental and theoretical characterisation of sonochemical cells. Part 2: cell disruptors (Ultrasonic horns) and cavity cluster collapse. , 2005, Physical chemistry chemical physics : PCCP.

[60]  L. Foldy,et al.  The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers , 1945 .

[61]  O. Louisnard,et al.  FEM simulation of a sono-reactor accounting for vibrations of the boundaries. , 2009, Ultrasonics sonochemistry.

[62]  Zhi-wen Shao,et al.  A new method of semi-continuous casting of AZ80 Mg alloy billets by a combination of electromagnetic and ultrasonic fields , 2011 .

[63]  J. Caltagirone,et al.  On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors. , 2003, Ultrasonics sonochemistry.

[64]  N. Ince,et al.  Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications , 2001 .

[65]  D. Krishnaiah,et al.  Sonophotocatalysis in advanced oxidation process: a short review. , 2009, Ultrasonics sonochemistry.

[66]  C. Ogino,et al.  Sonocatalytic degradation of methylene blue with TiO2 pellets in water. , 2007, Ultrasonics sonochemistry.

[67]  K. M. Swamy,et al.  Modeling of three-dimensional pressure fields in sonochemical reactors with an inhomogeneous density distribution of cavitation bubbles. Comparison of theoretical and experimental results. , 1999, Ultrasonics sonochemistry.

[68]  F. Espitalier,et al.  Sono-crystallization of ZnSO4⋅7H2O with variation of solution heights , 2012 .

[69]  Parag R. Gogate,et al.  Design aspects of sonochemical reactors: Techniques for understanding cavitational activity distribution and effect of operating parameters , 2009 .

[70]  Ulrich Kunz,et al.  Design, modeling and performance of a novel sonochemical reactor for heterogeneous reactions , 1996 .

[71]  Parag R. Gogate,et al.  Theoretical prediction of cavitational activity distribution in sonochemical reactors , 2010 .

[72]  Enrique Riera,et al.  Chacterization of a 20 kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods , 2005 .

[73]  A. Nordon,et al.  Ultrasonic wave propagation in cylindrical vessels and implications for ultrasonic reactor design , 2010, 2010 IEEE International Ultrasonics Symposium.

[74]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[75]  J. Caltagirone,et al.  Spatio-temporal dynamics of cavitation bubble clouds in a low frequency reactor: comparison between theoretical and experimental results. , 2001, Ultrasonics sonochemistry.

[77]  B. Uscinski,et al.  The multiple scattering of waves in irregular media. II. Spatial autocorrelation functions , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[78]  K. Yasui Fundamentals of Acoustic Cavitation and Sonochemistry , 2010 .

[79]  B. Dubus,et al.  On the physical origin of conical bubble structure under an ultrasonic horn. , 2010, Ultrasonics sonochemistry.

[80]  José González-García,et al.  Study of the influence of transducer-electrode and electrode-wall gaps on the acoustic field inside a sonoelectrochemical reactor by FEM simulations , 2011 .

[81]  R. Mettin,et al.  MODELING ACOUSTIC CAVITATION WITH BUBBLE REDISTRIBUTION , 2006 .

[82]  Robert Mettin,et al.  Bubble Structures in Acoustic Cavitation: Observation and Modeling of a "Jellyfish"streamer , 2002 .

[83]  L. van Wijngaarden,et al.  On the equations of motion for mixtures of liquid and gas bubbles , 1968, Journal of Fluid Mechanics.

[84]  O. Louisnard,et al.  Sonochemical Treatment of Water Polluted by Chlorinated Organocompounds. A Review , 2010 .

[85]  L. van Wijngaarden,et al.  One-Dimensional Flow of Liquids Containing Small Gas Bubbles , 1972 .

[86]  K. Suslick,et al.  Applications of Ultrasound to Materials Chemistry , 1995 .

[87]  L. Crum,et al.  Acoustic Cavitation , 1982 .

[88]  Shriniwas D. Samant,et al.  Semiquantitative characterization of ultrasonic cleaner using a novel piezoelectric pressure intensity measurement probe , 1995 .

[89]  C. Leonelli,et al.  Microwave and ultrasonic processing: Now a realistic option for industry , 2010 .

[90]  Véronique Halloin,et al.  The radially vibrating horn: A scaling-up possibility for sonochemical reactions , 1999 .

[91]  Zhi-wen Shao,et al.  Numerical simulation of acoustic pressure field for ultrasonic grain refinement of AZ80 magnesium alloy , 2011 .

[92]  T. Leighton The Acoustic Bubble , 1994 .

[93]  Zhi-wen Shao,et al.  Numerical simulation of standing waves for ultrasonic purification of magnesium alloy melt , 2010 .

[94]  Javad Abbaszadeh Bargoshadi,et al.  Ultrasonic dispersion system design and optimization using multiple transducers , 2009 .

[95]  C. Campos-Pozuelo,,et al.  Nonlinear ultrasonic standing waves: two-dimensional simulations in bubbly liquids. , 2011, Ultrasonics sonochemistry.

[96]  D. Lohse,et al.  Does water vapor prevent upscaling sonoluminescence? , 2000, Physical review letters.

[98]  J A Gallego-Juárez,et al.  Power ultrasonic transducers with extensive radiators for industrial processing. , 2010, Ultrasonics sonochemistry.