A Gaussian limit process for optimal FIND algorithms

We consider versions of the FIND algorithm where the pivot element used is the median of a subset chosen uniformly at random from the data. For the median selection we assume that subsamples of size asymptotic to $c \cdot n^\alpha$ are chosen, where $0 0$ and $n$ is the size of the data set to be split. We consider the complexity of FIND as a process in the rank to be selected and measured by the number of key comparisons required. After normalization we show weak convergence of the complexity to a centered Gaussian process as $n \to \infty$, which depends on $\alpha$. The proof relies on a contraction argument for probability distributions on cadlag functions. We also identify the covariance function of the Gaussian limit process and discuss path and tail properties.

[1]  C. SIAMJ. OPTIMAL SAMPLING STRATEGIES IN QUICKSORT AND QUICKSELECT , 2001 .

[2]  H. Prodinger,et al.  Analysis of Hoare's FIND algorithm with median-of-three partition , 1997 .

[3]  Hosam M. Mahmoud Distributional analysis of swaps in Quick Select , 2010, Theor. Comput. Sci..

[4]  R. Neininger,et al.  Approximating Perpetuities , 2007, 0711.1099.

[5]  Helmut Prodinger,et al.  On a Constant Arising in the Analysis of Bit Comparisons in Quickselect , 2008 .

[6]  R. Rosenfeld,et al.  Decisions , 1955, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[7]  James Allen Fill,et al.  Perfect Simulation of Vervaat Perpetuities , 2009 .

[8]  Alfredo Viola,et al.  Adaptive sampling strategies for quickselects , 2010, TALG.

[9]  Conrado Martínez,et al.  Optimal Sampling Strategies in Quicksort and Quickselect , 2002, SIAM J. Comput..

[10]  Donald E. Knuth,et al.  Mathematical Analysis of Algorithms , 1971, IFIP Congress.

[11]  Margarete Knape,et al.  Appendix to “Approximating Perpetuities” , 2012, 1203.0679.

[12]  Mahmoud Ragab,et al.  Partial quicksort and weighted branching processes , 2011 .

[13]  Rudolf Grübel Hoare's selection algorithm: a Markov chain approach , 1998 .

[14]  L. Rüschendorf,et al.  Analysis of Algorithms by the Contraction Method: Additive and Max-recursive Sequences , 2005 .

[15]  Helmut Prodinger,et al.  Comparisons in Hoare's Find Algorithm , 1998, Combinatorics, Probability and Computing.

[16]  Hsien-Kuei Hwang,et al.  Quickselect and the Dickman Function , 2002, Combinatorics, Probability and Computing.

[17]  U. Rösler A limit theorem for "Quicksort" , 1991, RAIRO Theor. Informatics Appl..

[18]  J. Blanchet,et al.  On exact sampling of stochastic perpetuities , 2011, Journal of Applied Probability.

[19]  R. Grübel,et al.  Asymptotic distribution theory for Hoare's selection algorithm , 1996, Advances in Applied Probability.

[20]  Luc Devroye,et al.  Exponential Bounds for the Running Time of a Selection Algorithm , 1984, J. Comput. Syst. Sci..

[21]  Uwe Roesler,et al.  The Analysis of Find and Versions of it , 2012, Discret. Math. Theor. Comput. Sci..

[22]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[23]  Hosam M. Mahmoud,et al.  Analysis of Quickselect: An Algorithm for Order Statistics , 1995, RAIRO Theor. Informatics Appl..

[24]  Luc Devroye,et al.  Simulating the Dickman distribution , 2010 .

[25]  Conrado Martínez Parra,et al.  Optimal sampling strategies in quicksort and quickselect , 1998 .

[26]  James Allen Fill,et al.  Distributional convergence for the number of symbol comparisons used by QuickSelect , 2012, ArXiv.

[27]  Philippe Flajolet,et al.  The Number of Symbol Comparisons in QuickSort and QuickSelect , 2009, ICALP.

[28]  L. Rüschendorf,et al.  A general limit theorem for recursive algorithms and combinatorial structures , 2004 .

[29]  Hosam M. Mahmoud Average-case Analysis of Moves in Quick Select , 2009, ANALCO.

[30]  Ralph Neininger,et al.  A statistical view on exchanges in Quickselect , 2013, ANALCO.

[31]  Volkert Paulsen,et al.  THE MOMENTS OF FIND , 1997 .

[32]  C. A. R. Hoare,et al.  Algorithm 65: find , 1961, Commun. ACM.

[33]  Luc Devroye,et al.  Simulating Perpetuities , 2001 .

[34]  Uwe Rösler,et al.  The contraction method for recursive algorithms , 2001, Algorithmica.

[35]  S. Janson,et al.  A functional limit theorem for the profile of search trees. , 2006, math/0609385.

[36]  Luc Devroye,et al.  ON THE PROBABILISTIC WORST-CASE TIME OF “FIND” , 2001 .

[37]  Sebastian Wild,et al.  Analysis of Quickselect Under Yaroslavskiy’s Dual-Pivoting Algorithm , 2014, Algorithmica.

[38]  Luc Devroye,et al.  The double CFTP method , 2011, TOMC.

[39]  Mahmoud Ragab,et al.  The Quicksort process , 2013, 1302.3770.

[40]  M. Talagrand Regularity of gaussian processes , 1987 .

[41]  R. Adler An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .

[42]  James Allen Fill,et al.  Analysis of the Expected Number of Bit Comparisons Required by Quickselect , 2008, ANALCO.

[43]  Richard M. Dudley,et al.  Sample Functions of the Gaussian Process , 1973 .

[44]  R. Brown,et al.  Combinatorial aspects of C.A.R. Hoare's FIND algorithm , 1992, Australas. J Comb..

[45]  Henning Sulzbach,et al.  On a functional contraction method , 2012, ArXiv.

[46]  L. Rüschendorf On stochastic recursive equations of sum and max type , 2006, Journal of Applied Probability.

[47]  Rudolf Grübel,et al.  On the median-of-K version of Hoare's selection algorithm , 1999, RAIRO Theor. Informatics Appl..

[48]  Rüschendorf Ludger,et al.  A limit theorem for recursively defined processes in L , 2007 .

[49]  Alfredo Viola,et al.  Adaptative sampling strategies for Quickselect , 2004 .