How chaotic is the stadium billiard? A semiclassical analysis

The impression gained from the literature published to date is that the spectrum of the stadium billiard can be adequately described, semiclassically, by the Gutzwiller periodic orbit trace formula together with a modified treatment of the marginally stable family of bouncing-ball orbits. I show that this belief is erroneous. The Gutzwiller trace formula is not applicable for the phase-space dynamics near the bouncing-ball orbits. Unstable periodic orbits close to the marginally stable family in phase space cannot be treated as isolated stationary phase points when approximating the trace of the Green's function. Semiclassical contributions to the trace show an -dependent transition from hard chaos to integrable behaviour for trajectories approaching the bouncing-ball orbits. A whole region in phase space surrounding the marginal stable family acts, semiclassically, like a stable island with boundaries being explicitly -dependent. The localized bouncing-ball states found in the billiard derive from this semiclassically stable island. The bouncing-ball orbits themselves, however, do not contribute to individual eigenvalues in the spectrum. An EBK-like quantization of the regular bouncing-ball eigenstates in the stadium can be derived. The stadium billiard is thus an ideal model for studying the influence of almost regular dynamics near marginally stable boundaries on quantum mechanics. The behaviour is generically found at the border of classically stable islands in systems with a mixed phase-space structure.

[1]  J. Hannay,et al.  Resonant periodic orbits and the semiclassical energy spectrum , 1987 .

[2]  M. Berry,et al.  Closed orbits and the regular bound spectrum , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  J. Hannay,et al.  Periodic orbits and a correlation function for the semiclassical density of states , 1984 .

[4]  G. Vattay,et al.  Beyond the periodic orbit theory , 1997, chao-dyn/9712002.

[5]  O. Bohigas,et al.  Manifestations of classical phase space structures in quantum mechanics , 1993 .

[6]  Eberhard R. Hilf,et al.  Spectra of Finite Systems , 1980 .

[7]  H. R. Dullin,et al.  Symbolic Dynamics and Periodic Orbits for the Cardioid Billiard , 1995 .

[8]  L. Bunimovich On the ergodic properties of nowhere dispersing billiards , 1979 .

[9]  Tomsovic,et al.  Dynamical quasidegeneracies and separation of regular and irregular quantum levels. , 1990, Physical review letters.

[10]  S. Berman,et al.  Nuovo Cimento , 1983 .

[11]  J. Keating,et al.  Calculation of spectral determinants , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  Biham,et al.  Unstable periodic orbits in the stadium billiard. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  J. Keating,et al.  A new asymptotic representation for ζ(½ + it) and quantum spectral determinants , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[14]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[15]  Per Dahlqvist,et al.  Determination of resonance spectra for bound chaotic systems , 1994 .

[16]  Andreev,et al.  Spectral statistics: From disordered to chaotic systems. , 1995, Physical review letters.

[17]  Eric J. Heller,et al.  Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits , 1984 .

[18]  The semiclassical resonance spectrum of hydrogen in a constant magnetic field , 1996, chao-dyn/9601009.

[19]  Scherer,et al.  Quantum eigenvalues from classical periodic orbits. , 1991, Physical review letters.

[20]  G. Casati,et al.  On the connection between quantization of nonintegrable systems and statistical theory of spectra , 1980 .

[21]  R. Lathe Phd by thesis , 1988, Nature.

[22]  J. Keating,et al.  A rule for quantizing chaos , 1990 .

[23]  J. H. Lefebvre,et al.  Studies of Bogomolny's semiclassical quantization of integrable and nonintegrable systems , 1994 .

[24]  Stephen C. Creagh,et al.  Non-generic spectral statistics in the quantized stadium billiard , 1993 .

[25]  M. Sieber Uniform approximation for bifurcations of periodic orbits with high repetition numbers , 1996 .

[26]  E. Bogomolny Semiclassical quantization of multidimensional systems , 1992 .

[27]  B. Lauritzen Semiclassical Poincare map for integrable systems. , 1992, Chaos.

[28]  P. Cvitanović,et al.  Periodic orbit expansions for classical smooth flows , 1991 .

[29]  A. Voros,et al.  Spectral functions, special functions and the Selberg zeta function , 1987 .

[30]  Kaufman,et al.  Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation. , 1988, Physical review. A, General physics.

[31]  R. Balian,et al.  Solution of the Schrodinger Equation in Terms of Classical Paths , 1974 .

[32]  G. Tanner,et al.  Quantization of chaotic systems. , 1992, Chaos.

[33]  Cvitanovic,et al.  Periodic-orbit quantization of chaotic systems. , 1989, Physical review letters.

[34]  G. Tanner,et al.  Classical and semiclassical zeta functions in terms of transition probabilities , 1995 .

[35]  M. Berry,et al.  Calculating the bound spectrum by path summation in action-angle variables , 1977 .

[36]  U. Smilansky,et al.  Penumbra diffraction in the semiclassical quantization of concave billiards , 1996, chao-dyn/9611009.

[37]  Orbital magnetism in the ballistic regime: geometrical effects , 1996, cond-mat/9609201.

[38]  R. Balian,et al.  Distribution of eigenfrequencies for the wave equation in a finite domain: III. Eigenfrequency density oscillations , 1972 .

[39]  M. Berry,et al.  Semiclassical theory of spectral rigidity , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  J. Stein,et al.  "Quantum" chaos in billiards studied by microwave absorption. , 1990, Physical review letters.

[41]  E. Aurell,et al.  Convergence of the Semi-Classical Periodic Orbit Expansion , 1989 .

[42]  Allen S. Mandel Comment … , 1978, British heart journal.

[43]  Ikeda,et al.  Complex Classical Trajectories and Chaotic Tunneling. , 1995, Physical review letters.

[44]  S. Creagh Trace Formula for Broken Symmetry , 1996 .

[45]  J. Keating,et al.  False singularities in partial sums over closed orbits , 1987 .

[46]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[47]  Per Dahlqvist,et al.  Approximate zeta functions for the Sinai billiard and related systems , 1994, chao-dyn/9402007.

[48]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[49]  W. Hauschild,et al.  Review of fundamentals , 1992 .

[50]  Vattay,et al.  Entire Fredholm determinants for evaluation of semiclassical and thermodynamical spectra. , 1993, Physical review letters.

[51]  Prangé,et al.  Exact and quasiclassical Fredholm solutions of quantum billiards. , 1995, Physical review letters.

[52]  Weidenmüller,et al.  Distribution of eigenmodes in a superconducting stadium billiard with chaotic dynamics. , 1992, Physical review letters.

[53]  Stein,et al.  Experimental determination of billiard wave functions. , 1992, Physical review letters.

[54]  E. Bogomolny,et al.  Gutzwiller's Trace Formula and Spectral Statistics: Beyond the Diagonal Approximation. , 1996, Physical review letters.

[55]  Haggerty Semiclassical quantization using Bogomolny's quantum surface of section. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  Giulio Casati,et al.  Quantum chaos : between order and disorder , 1995 .

[57]  Y. C. Verdière,et al.  Ergodicité et fonctions propres du laplacien , 1985 .

[58]  Semiclassical description of tunneling in mixed systems: Case of the annular billiard. , 1995, Physical review letters.

[59]  Edge diffraction, trace formulae and the cardioid billiard , 1995, chao-dyn/9509005.

[60]  Tomsovic,et al.  Semiclassical trace formulas of near-integrable systems: Resonances. , 1995, Physical review letters.

[61]  Steve Zelditch,et al.  Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .

[62]  Allan N. Kaufman,et al.  Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories , 1979 .

[63]  P. A. Boasman Semiclassical accuracy for billiards , 1994 .

[64]  Spectral statistics beyond random matrix theory. , 1995, Physical review letters.

[65]  Tanner,et al.  Semiclassical quantization of intermittency in helium. , 1995, Physical review letters.

[66]  O'Connor,et al.  Quantum localization for a strongly classically chaotic system. , 1988, Physical review letters.

[67]  Steiner,et al.  Quantization of chaos. , 1991, Physical review letters.

[68]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[69]  L. Bunimovich,et al.  Conditions of stochasticity of two-dimensional billiards. , 1991, Chaos.

[70]  A. Voros Unstable periodic orbits and semiclassical quantisation , 1988 .

[71]  P. Gaspard,et al.  Role of the edge orbits in the semiclassical quantization of the stadium billiard , 1994 .

[72]  Cvitanovic,et al.  Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.

[73]  Rafael I. Nepomechie,et al.  Integrable open spin chains with nonsymmetric R-matrices , 1991 .