A Numerical Scheme for the Quantile Hedging Problem

We consider the numerical approximation of the quantile hedging price in a non-linear market. In a Markovian framework, we propose a numerical method based on a Piecewise Constant Policy Timestepping (PCPT) scheme coupled with a monotone finite difference approximation. We prove the convergence of our algorithm combining BSDE arguments with the Barles & Jakobsen and Barles & Souganidis approaches for non-linear equations. In a numerical section, we illustrate the efficiency of our scheme by considering a financial example in a market with imperfections.

[1]  Guy Barles,et al.  Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations , 2007, Math. Comput..

[2]  Bruno Bouchard,et al.  A Backward Dual Representation for the Quantile Hedging of Bermudan Options , 2016, SIAM J. Financial Math..

[3]  E. Jakobsen,et al.  CONTINUOUS DEPENDENCE ESTIMATES FOR VISCOSITY SOLUTIONS OF INTEGRO-PDES , 2005 .

[4]  Hans Föllmer,et al.  Quantile hedging , 1999, Finance Stochastics.

[5]  R. Darling,et al.  BACKWARDS SDE WITH RANDOM TERMINAL TIME AND APPLICATIONS TO SEMILINEAR ELLIPTIC PDE , 1997 .

[6]  Christoph Reisinger,et al.  Improved order 1/4 convergence for piecewise constant policy approximation of stochastic control problems , 2019, Electronic Communications in Probability.

[7]  N. Krylov On the rate of convergence of finite-difference approximations for Bellmans equations with variable coefficients , 2000 .

[8]  Bruno Bouchard,et al.  Stochastic Target Problems with Controlled Loss , 2009, SIAM J. Control. Optim..

[9]  Xavier Warin,et al.  Some Non-monotone Schemes for Time Dependent Hamilton–Jacobi–Bellman Equations in Stochastic Control , 2013, J. Sci. Comput..

[10]  G. Barles,et al.  CONVERGENCE OF NUMERICAL SCHEMES FOR PARABOLIC EQUATIONS ARISING IN FINANCE THEORY , 1995 .

[11]  Géraldine Bouveret,et al.  Erratum to: A Comparison Principle for PDEs Arising in Approximate Hedging Problems: Application to Bermudan Options , 2015, 1512.09189.

[12]  Christoph Reisinger The non-locality of Markov chain approximations to two-dimensional diffusions , 2018, Math. Comput. Simul..

[13]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[14]  Stefano Pagliarani,et al.  Analytical Approximations of BSDEs with Non-Smooth Driver , 2014, SIAM J. Financial Math..

[15]  Hasnaa Zidani,et al.  Numerical Approximation for a Superreplication Problem under Gamma Constraints , 2009, SIAM J. Numer. Anal..

[16]  Christoph Reisinger,et al.  Approximation Schemes for Mixed Optimal Stopping and Control Problems with Nonlinear Expectations and Jumps , 2018, Applied Mathematics & Optimization.

[17]  Christoph Reisinger,et al.  Piecewise constant policy approximations to Hamilton-Jacobi-Bellman equations , 2015, 1503.05864.

[18]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[19]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[20]  Wissal Sabbagh,et al.  BSDEs with weak reflections and partial hedging of American options , 2017 .

[21]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1991 .

[22]  Bruno Bouchard,et al.  A Stochastic Target Approach for P&L Matching Problems , 2012, Math. Oper. Res..

[23]  Jean-François Chassagneux,et al.  Obliquely reflected backward stochastic differential equations , 2020 .

[24]  Roxana Dumitrescu BSDEs with nonlinear weak terminal condition. , 2016, 1602.00321.

[25]  Guy Barles,et al.  Hamilton-Jacobi equations : approximations, numerical analysis and applications : Cetraro, Italy 2011 , 2013 .

[26]  Ludovic Moreau Stochastic Target Problems with Controlled Loss in Jump Diffusion Models , 2011, SIAM J. Control. Optim..

[27]  N. Krylov,et al.  Approximating Value Functions for Controlled Degenerate Diffusion Processes by Using Piece-Wise Constant Policies , 1999 .