A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin

[1]  E. Winzeler,et al.  Generation of a mutator parasite to drive resistome discovery in Plasmodium falciparum , 2022, bioRxiv.

[2]  F. Gamo,et al.  Discovery and Preclinical Pharmacology of INE963, a Potent and Fast-Acting Blood-Stage Antimalarial with a High Barrier to Resistance and Potential for Single-Dose Cures in Uncomplicated Malaria , 2022, Journal of medicinal chemistry.

[3]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[4]  T. Horii,et al.  Evidence of Artemisinin-Resistant Malaria in Africa. , 2021, The New England journal of medicine.

[5]  Kwaku Poku Asante,et al.  Efficacy of Cipargamin (KAE609) in a Randomized, Phase II Dose-Escalation Study in Adults in Sub-Saharan Africa With Uncomplicated Plasmodium falciparum Malaria , 2021, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[6]  R. Price,et al.  The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to Plasmodium falciparum parasite resistance , 2021, Science Translational Medicine.

[7]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[8]  E. Winzeler,et al.  The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance , 2021, Cell Chemical Biology.

[9]  P. Sinnis,et al.  Plasmodium falciparum Gametocyte Culture and Mosquito Infection Through Artificial Membrane Feeding. , 2020, Journal of visualized experiments : JoVE.

[10]  M. Grobusch,et al.  The early preclinical and clinical development of cipargamin (KAE609), a novel antimalarial compound. , 2020, Travel medicine and infectious disease.

[11]  K. Stegmaier,et al.  Blockade of Oncogenic NOTCH1 with the SERCA Inhibitor CAD204520 in T Cell Acute Lymphoblastic Leukemia. , 2020, Cell chemical biology.

[12]  J. McCarthy,et al.  Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a novel Plasmodium falciparum ATP4 inhibitor SJ733: a first-in-human and induced blood-stage malaria phase 1a/b trial. , 2020, The Lancet. Infectious diseases.

[13]  Manuel de Lera Ruiz,et al.  Dual Plasmepsin-Targeting Antimalarial Agents Disrupt Multiple Stages of the Malaria Parasite Life Cycle , 2020, Cell host & microbe.

[14]  D. Fidock,et al.  Accelerated evolution and spread of multidrug-resistant Plasmodium falciparum takes down the latest first-line antimalarial drug in southeast Asia , 2019, The Lancet. Infectious diseases.

[15]  K. Kirk,et al.  A 4-cyano-3-methylisoquinoline inhibitor of Plasmodium falciparum growth targets the sodium efflux pump PfATP4 , 2019, Scientific Reports.

[16]  Richard J Maude,et al.  Evolution and expansion of multidrug-resistant malaria in southeast Asia: a genomic epidemiology study , 2019, bioRxiv.

[17]  Christopher J. Tonkin,et al.  Characterization of the ATP4 ion pump in Toxoplasma gondii , 2019, The Journal of Biological Chemistry.

[18]  K. Kirk,et al.  The tyrosine transporter of Toxoplasma gondii is a member of the newly defined apicomplexan amino acid transporter (ApiAT) family , 2019, PLoS pathogens.

[19]  K. Kirk,et al.  Biochemical characterization and chemical inhibition of PfATP4-associated Na+-ATPase activity in Plasmodium falciparum membranes , 2018, The Journal of Biological Chemistry.

[20]  K. Kirk,et al.  Diverse antimalarials from whole-cell phenotypic screens disrupt malaria parasite ion and volume homeostasis , 2018, Scientific Reports.

[21]  Adelaide S. M. Dennis,et al.  Cell Swelling Induced by the Antimalarial KAE609 (Cipargamin) and Other PfATP4-Associated Antimalarials , 2018, Antimicrobial Agents and Chemotherapy.

[22]  E. Winzeler,et al.  Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery , 2018, ACS infectious diseases.

[23]  T. Bousema,et al.  Modelling mosquito infection at natural parasite densities identifies drugs targeting EF2, PI4K or ATP4 as key candidates for interrupting malaria transmission , 2017, Scientific Reports.

[24]  Johannes Söding,et al.  MMseqs2: sensitive protein sequence searching for the analysis of massive data sets , 2017, bioRxiv.

[25]  E. Crawford,et al.  Plasmid-free CRISPR/Cas9 genome editing in Plasmodium falciparum confirms mutations conferring resistance to the dihydroisoquinolone clinical candidate SJ733 , 2017, PloS one.

[26]  Daniel L. Cameron,et al.  GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly , 2017, bioRxiv.

[27]  David W. Gray,et al.  Biochemical and Structural Characterization of Selective Allosteric Inhibitors of the Plasmodium falciparum Drug Target, Prolyl-tRNA-synthetase , 2016, ACS infectious diseases.

[28]  G. McFadden,et al.  The Import of Proteins into the Mitochondrion of Toxoplasma gondii * , 2016, The Journal of Biological Chemistry.

[29]  G. Sunkara,et al.  KAE609 (Cipargamin), a New Spiroindolone Agent for the Treatment of Malaria: Evaluation of the Absorption, Distribution, Metabolism, and Excretion of a Single Oral 300-mg Dose of [14C]KAE609 in Healthy Male Subjects , 2016, Drug Metabolism and Disposition.

[30]  Joanne M. Morrisey,et al.  Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum , 2016, PLoS pathogens.

[31]  D. Fidock,et al.  Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites , 2016, PloS one.

[32]  J. Niles,et al.  Synthetic RNA–protein modules integrated with native translation mechanisms to control gene expression in malaria parasites , 2016, Nature Communications.

[33]  C. Lim,et al.  A Basis for Rapid Clearance of Circulating Ring-Stage Malaria Parasites by the Spiroindolone KAE609 , 2015, The Journal of infectious diseases.

[34]  K. Kirk,et al.  Diverse chemotypes disrupt ion homeostasis in the malaria parasite , 2015, Molecular microbiology.

[35]  G. Lefèvre,et al.  Open-Label, Single-Dose, Parallel-Group Study in Healthy Volunteers To Determine the Drug-Drug Interaction Potential between KAE609 (Cipargamin) and Piperaquine , 2015, Antimicrobial Agents and Chemotherapy.

[36]  Elizabeth A. Winzeler,et al.  Mutations in the P-Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials , 2014, ACS chemical biology.

[37]  Pieter Wesseling,et al.  DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly , 2014, Genome research.

[38]  Hongshen Ma,et al.  (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium , 2014, Proceedings of the National Academy of Sciences.

[39]  Sandhya Kortagere,et al.  Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum , 2014, Nature Communications.

[40]  P. Gething,et al.  Lead Clinical and Preclinical Antimalarial Drugs Can Significantly Reduce Sporozoite Transmission to Vertebrate Populations , 2014, Antimicrobial Agents and Chemotherapy.

[41]  Kiaran Kirk,et al.  Diverse chemotypes disrupt ion homeostasis in the malaria parasite , 2014, Molecular microbiology.

[42]  Baldur P Magnusson,et al.  A First-in-Human Randomized, Double-Blind, Placebo-Controlled, Single- and Multiple-Ascending Oral Dose Study of Novel Antimalarial Spiroindolone KAE609 (Cipargamin) To Assess Its Safety, Tolerability, and Pharmacokinetics in Healthy Adult Volunteers , 2014, Antimicrobial Agents and Chemotherapy.

[43]  Baldur P Magnusson,et al.  Spiroindolone KAE609 for falciparum and vivax malaria. , 2014, The New England journal of medicine.

[44]  Kevin M. Brown,et al.  Efficient Gene Disruption in Diverse Strains of Toxoplasma gondii Using CRISPR/CAS9 , 2014, mBio.

[45]  Alexander D. MacKerell,et al.  CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. , 2014, Advances in protein chemistry and structural biology.

[46]  R. McLeod,et al.  Spiroindolone That Inhibits PfATPase4 Is a Potent, Cidal Inhibitor of Toxoplasma gondii Tachyzoites In Vitro and In Vivo , 2013, Antimicrobial Agents and Chemotherapy.

[47]  Elizabeth A. Winzeler,et al.  Na+ Regulation in the Malaria Parasite Plasmodiumfalciparum Involves the Cation ATPase PfATP4 and Is a Target of the Spiroindolone Antimalarials , 2013, Cell host & microbe.

[48]  C. Spry,et al.  Pantothenamides Are Potent, On-Target Inhibitors of Plasmodium falciparum Growth When Serum Pantetheinase Is Inactivated , 2013, PloS one.

[49]  Xavier C Ding,et al.  A framework for assessing the risk of resistance for anti-malarials in development , 2012, Malaria Journal.

[50]  G. van Gemert,et al.  The Spiroindolone Drug Candidate NITD609 Potently Inhibits Gametocytogenesis and Blocks Plasmodium falciparum Transmission to Anopheles Mosquito Vector , 2012, Antimicrobial Agents and Chemotherapy.

[51]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[52]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[53]  Christopher A. Miller,et al.  VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. , 2012, Genome research.

[54]  A. Biegert,et al.  HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment , 2011, Nature Methods.

[55]  Mark D. Johnson,et al.  Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion , 2011, Proceedings of the National Academy of Sciences.

[56]  H. Hakonarson,et al.  SNVer: a statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data , 2011, Nucleic acids research.

[57]  Bruce Russell,et al.  Spiroindolones, a Potent Compound Class for the Treatment of Malaria , 2010, Science.

[58]  James R. Brown,et al.  Thousands of chemical starting points for antimalarial lead identification , 2010, Nature.

[59]  Anang A. Shelat,et al.  Chemical genetics of Plasmodium falciparum , 2010, Nature.

[60]  T. Zor,et al.  Linearization of the bradford protein assay. , 2010, Journal of visualized experiments : JoVE.

[61]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[62]  D. Fidock,et al.  A method for rapid genetic integration into Plasmodium falciparum utilizing mycobacteriophage Bxb1 integrase. , 2010, Methods in molecular biology.

[63]  K. Kirk,et al.  Plasmodium falciparum culture: the benefits of shaking. , 2010, Molecular and biochemical parasitology.

[64]  P. Nissen,et al.  Cyclopiazonic Acid Is Complexed to a Divalent Metal Ion When Bound to the Sarcoplasmic Reticulum Ca2+-ATPase* , 2009, Journal of Biological Chemistry.

[65]  Swati Agrawal,et al.  Toxoplasma gondii Tic20 is essential for apicoplast protein import , 2008, Proceedings of the National Academy of Sciences.

[66]  Peter G. Schultz,et al.  In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen , 2008, Proceedings of the National Academy of Sciences.

[67]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[68]  D. Fidock,et al.  Decreasing pfmdr1 copy number in plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. , 2006, The Journal of infectious diseases.

[69]  P. Wilairat,et al.  Simple and Inexpensive Fluorescence-Based Technique for High-Throughput Antimalarial Drug Screening , 2004, Antimicrobial Agents and Chemotherapy.

[70]  K. Kirk,et al.  Perturbation of the pump-leak balance for Na(+) and K(+) in malaria-infected erythrocytes. , 2001, American journal of physiology. Cell physiology.

[71]  S. Krishna,et al.  Expression and Functional Characterization of a Plasmodium falciparum Ca2+-ATPase (PfATP4) Belonging to a Subclass Unique to Apicomplexan Organisms* , 2001, The Journal of Biological Chemistry.

[72]  D. Fidock,et al.  Cycloguanil and its parent compound proguanil demonstrate distinct activities against Plasmodium falciparum malaria parasites transformed with human dihydrofolate reductase. , 1998, Molecular pharmacology.

[73]  K. Kirk,et al.  Transport and Metabolism of the Essential Vitamin Pantothenic Acid in Human Erythrocytes Infected with the Malaria ParasitePlasmodium falciparum * , 1998, The Journal of Biological Chemistry.

[74]  P. Rathod,et al.  Variations in frequencies of drug resistance in Plasmodium falciparum. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[75]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[76]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[77]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[78]  Barnett,et al.  Supplementary References , 2022 .