In-Situ Spatial Inference on Climate Simulations with Sparse Gaussian Processes

As extreme-scale physics simulation becomes increasingly memory and storage expensive, the ability to access full simulation data for statistical analysis is becoming increasingly limited. The capability to perform in-situ statistical inference of state variables is becoming increasingly important for the comprehensive utilization of the huge amounts of information generated by these simulations. In this work, we report the first results fitting scalable Gaussian process regression to the state information of an expensive simulation in-situ. For this, spatial regression of upper atmosphere temperature data was performed using Julia coupled to the E3SM climate model. The resulting sparse Gaussian process model shows strong predictive performance using a small number of representative observations. These results provide the backbone for more general in-situ spatial inference with Gaussian process models in complex physics simulations.

[1]  Franck Cappello,et al.  Toward Exascale Resilience , 2009, Int. J. High Perform. Comput. Appl..

[2]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[3]  Scott Klasky,et al.  In Situ Methods, Infrastructures, and Applications on High Performance Computing Platforms , 2016, Comput. Graph. Forum.

[4]  Franck Cappello,et al.  An Efficient Transformation Scheme for Lossy Data Compression with Point-Wise Relative Error Bound , 2018, 2018 IEEE International Conference on Cluster Computing (CLUSTER).

[5]  Peter Lindstrom,et al.  Fixed-Rate Compressed Floating-Point Arrays , 2014, IEEE Transactions on Visualization and Computer Graphics.

[6]  Hans Hagen,et al.  In Situ Eddy Analysis in a High-Resolution Ocean Climate Model , 2016, IEEE Transactions on Visualization and Computer Graphics.

[7]  Franz Sauer,et al.  In situ generated probability distribution functions for interactive post hoc visualization and analysis , 2016, 2016 IEEE 6th Symposium on Large Data Analysis and Visualization (LDAV).

[8]  Chiwoo Park,et al.  Patchwork Kriging for Large-scale Gaussian Process Regression , 2017, J. Mach. Learn. Res..

[9]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[10]  James P. Ahrens,et al.  In situ data-driven adaptive sampling for large-scale simulation data summarization , 2018, ISAV@SC.

[11]  Robert T. Cunningham Grizzly Update; The Early and Condensed Version , 2017 .

[12]  Gunther H. Weber,et al.  Performance Analysis, Design Considerations, and Applications of Extreme-Scale In Situ Infrastructures , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.

[13]  Hanqi Guo,et al.  In situ magnetic flux vortex visualization in time-dependent Ginzburg-Landau superconductor simulations , 2017, 2017 IEEE Pacific Visualization Symposium (PacificVis).

[14]  Stephan R. Sain,et al.  Spatial Hierarchical Modeling of Precipitation Extremes From a Regional Climate Model , 2008 .

[15]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[16]  Karsten Schwan,et al.  Flexible IO and integration for scientific codes through the adaptable IO system (ADIOS) , 2008, CLADE '08.

[17]  D. Bader Energy Exascale Earth System Model (E3SM) Project Strategy , 2017 .

[18]  Haitao Liu,et al.  When Gaussian Process Meets Big Data: A Review of Scalable GPs , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[19]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[20]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[21]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[22]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[23]  James P. Ahrens,et al.  The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman , 2017, ISAV@SC.

[24]  Philip W. Jones,et al.  The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution , 2019, Journal of Advances in Modeling Earth Systems.

[25]  David R. Chesney,et al.  Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.

[26]  Stuart G. Coles,et al.  Spatial Regression Models for Extremes , 1999 .

[27]  James P. Ahrens,et al.  In‐situ Sampling of a Large‐Scale Particle Simulation for Interactive Visualization and Analysis , 2011, Comput. Graph. Forum.

[28]  John Shalf,et al.  Exascale Computing Technology Challenges , 2010, VECPAR.

[29]  Kenneth Moreland,et al.  Sandia National Laboratories , 2000 .

[30]  Earl Lawrence,et al.  Probabilistic Data-Driven Sampling via Multi-Criteria Importance Analysis , 2020, IEEE Transactions on Visualization and Computer Graphics.

[31]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[32]  Joseph A. Cottam,et al.  A terminology for in situ visualization and analysis systems , 2020, Int. J. High Perform. Comput. Appl..