GRNN 알고리즘을 이용한 비선형적 움직임 벡터 추정 및 프레임 보간연구
暂无分享,去创建一个
본 논문에서는 비선형적 움직임에 대하여 시각적 화질 향상에 목적을 둔 프레임 보간 기법을 제안한다. 그러므로 블록 현상과 영상의 중첩을 감소시키고자 블록 크기를 128x128부터 1x1까지 순차적으로 전역탐색을 실시하여 최소 오차값이 가장 작은 블록이 포함된 프레임을 선택하고, 비선형적인 움직임 벡터를 GRNN(General Regression Neural Network) 알고리즘을 이용하여 재 추정함으로써 프레임을 보간하는 알고리즘을 제안한다. 이러한 알고리즘의 성능 분석을 위해 프레임 반복, 단방향 움직임 보상, 양방향 움직임 보상의 기법들과 비교한다. 객체의 움직임이 크거나 카메라 초점의 이동과 줌인(zoom-in), 줌아웃(zoom-out) 효과가 들어간 대상 영상에 대하여 주관적 화질면에서 성능이 향상됨을 보인다.