Elastic properties of a single-crystal forsterite Mg2SiO4, up to 1,200 K

Elastic moduli of forsterite were measured between 300 and 1,200 K (≃ 1.6 times the Debye temperature) by the Rectangular Parallelepiped Resonance method. All the moduli decrease regularly with temperature. A summary of the results is as follows:Elastic moduli Cij in GPaT/KC11C22C33C44C55C660337.0205.6241.169.4953.5283.43300328.7199.8235.566.7880.9580.571,200292.9174.7207.155.3769.1467.22Temperature derivatives of elastic moduli, −∂Cij/∂T in MPa/K30038.426.929.412.312.514.11,20040.128.232.112.813.315.0temperature derivatives of elastic moduli, - ∂Cij/∂R in MPa/K whereCsi=(Cjj+Ckk−2·Cjk)/4; (i, j, k=1, 2, 3;i ≠j ≠k), and ρ is density in kg/m3. These data permit for the first time the calculation of elastic and thermal properties well into the classical range far above the Debye temperature. We find, for example, that the elastic constants, including the bulk moduls, closely follow standard equations throughout the measured temperature range. This information aids extrapolations up to the melting point. This data, coupled with thermal expansivity data permit the computations of thermal anharmonic parameters of minerals forT>θ.

[1]  S. Franck,et al.  A generalization of the Vashchenko-Zubarev formula for the Grüneisen parameter , 1980 .

[2]  O. L. Anderson,et al.  Anharmonicity of three minerals at high temperature: Forsterite, fayalite, and periclase , 1983 .

[3]  Susan Werner Kieffer,et al.  Thermodynamics and Lattice Vibrations of Minerals, 4, Application to Chain and Sheet Silicates and Orthosilicates (Paper 80R1044) , 1980 .

[4]  Reinhard Boehler,et al.  Adiabats of quartz, coesite, olivine, and magnesium oxide to 50 kbar and 1000 K, and the adiabatic gradient in the Earth's mantle , 1982 .

[5]  Mineo Kumazawa,et al.  The elastic constants of rocks in terms of elastic constants of constituent mineral grains, petrofabric and interface structures , 1964 .

[6]  J. Brian Thermal expansion of ten minerals , 1962 .

[7]  Mineo Kumazawa,et al.  MEASUREMENT OF ELASTIC CONSTANTS AND INTERNAL FRICTIONS ON SINGLE-CRYSTAL MgO BY RECTANGULAR PARALLELEPIPED RESONANCE , 1976 .

[8]  Mineo Kumazawa,et al.  Elastic moduli, pressure derivatives, and temperature derivatives of single‐crystal olivine and single‐crystal forsterite , 1969 .

[9]  Mineo Kumazawa,et al.  Elastic properties of garnet solid-solution series , 1978 .

[10]  Charles S. Smith,et al.  Temperature derivatives at constant volume of the elastic constants of the alkali halides , 1979 .

[11]  T. Goto,et al.  Shock compression measurements of single‐crystal forsterite in the pressure range 15–93 GPa , 1981 .

[12]  I. Barin,et al.  Thermochemical properties of inorganic substances , 1973 .

[13]  H. Takei,et al.  Thermal expansion of fayalite, Fe2SiO4 , 1981 .

[14]  Yoshio Sumino,et al.  THE ELASTIC CONSTANTS OF Mn2SiO4, Fe2SiO4 AND Co2SiO4, AND THE ELASTIC PROPERTIES OF OLIVINE GROUP MINERALS AT HIGH TEMPERATURE , 1979 .

[15]  Takayasu Goto,et al.  THE DETERMINATION OF THE ELASTIC CONSTANTS OF NATURAL ALMANDINE-PYROPE GARNET BY RECTANGULAR PARALLELEPIPED RESONANCE METHOD , 1976 .

[16]  C. Swenson,et al.  Equation of state of cubic solids; some generalizations☆ , 1968 .

[17]  Osamu Nishizawa,et al.  Temperature variation of elastic constants of single-crystal forsterite between -190.DEG. and 400.DEG.C. , 1977 .

[18]  G. R. Barsch,et al.  Elastic constants of single‐crystal forsterite as a function of temperature and pressure , 1969 .

[19]  O. Anderson,et al.  Using the thermal pressure to compute the physical properties of terrestrial planets , 1981 .

[20]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .

[21]  I. Ohno,et al.  FREE VIBRATION OF A RECTANGULAR PARALLELEPIPED CRYSTAL AND ITS APPLICATION TO DETERMINATION OF ELASTIC CONSTANTS OF ORTHORHOMBIC CRYSTALS , 1976 .

[22]  O. Anderson,et al.  An experimental high-temperature thermal equation of state bypassing the Grüneisen parameter , 1980 .

[23]  O. L. Anderson,et al.  2 - Determination and Some Uses of Isotropic Elastic Constants of Polycrystalline Aggregates Using Single-Crystal Data , 1965 .

[24]  S. C. Lakkad Temperature Dependence of the Elastic Constants , 1971 .

[25]  O. Anderson,et al.  Derivation of Wachtman's Equation for the Temperature Dependence of the Elastic Moduli of Oxide Compounds , 1966 .

[26]  H. Takei,et al.  Growth and properties of Mg2SiO4 single crystals , 1974 .

[27]  Isao Suzuki,et al.  Temperature coefficients of elastic constants of single crystal MgO between 80 and 1,300 K , 1983 .

[28]  Naohiro Soga,et al.  High‐Temperature Elasticity and Expansivity of Forsterite and Steatite , 1967 .

[29]  Reinhard Boehler,et al.  Experimental results on the pressure dependence of the Grüneisen parameter: A review , 1980 .

[30]  R. Verma,et al.  Elasticity of some high-density crystals , 1960 .

[31]  D. R. Stull JANAF thermochemical tables , 1966 .