A fuzzy set scale approach to value workers participation and learning

Abstract This article reports the process of building a fuzzy set scale in order to value workers participation and their learning through a technical improvement project in metallurgical plants. The process starts with a practical question which stems from workers: ‘How can we value our own participation in collective improvement project and the learning related to it?’ Participation is structured in three subsets: participation in planning, in designing and in implementing the improvement project. These three subsets are aggregated in a global participation set. Learning is structured in two subsets: individual and group learning in the form of fuzzy inference system Mandami type. Participation (causal condition) constitutes a subset of achieved learning (the outcome), a sufficient but not necessary condition for the outcome. This subset relation is highly consistent providing support for the statement “participatory projects enable meaningful learning” between workers and organization.

[1]  Ikujiro Nonaka,et al.  The knowledge-creating theory revisited: knowledge creation as a synthesizing process , 2003 .

[2]  Jerry M. Mendel,et al.  Charles Ragin's Fuzzy Set Qualitative Comparative Analysis (fsQCA) used for linguistic summarizations , 2012, Inf. Sci..

[3]  C. Argyris On organizational learning , 1993 .

[4]  Milagros Isabel Cova Labor organization changes in a participative context. An approach in Venezuelan metallurgical industries , 2011 .

[5]  Georg von Krogh,et al.  Perspective - Tacit Knowledge and Knowledge Conversion: Controversy and Advancement in Organizational Knowledge Creation Theory , 2009, Organ. Sci..

[6]  Lotfi A. Zadeh,et al.  Is there a need for fuzzy logic? , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[7]  S. Medina,et al.  Aproximación a la medición del capital intelectual organizacional aplicando sistemas de lógica difusa , 2010 .

[8]  Patrick A. Mello Fuzzy-Set Qualitative Comparative Analysis , 2014 .

[9]  Selmin Nurcan,et al.  Learning organization modelling patterns , 2016 .

[10]  T. Williamson Replies to Critics , 2009 .

[11]  Peer C. Fiss A set-theoretic approach to organizational configurations , 2007 .

[12]  Marek Hatala,et al.  Measuring the impact of technological scaffolding interventions on micro-level processes of self-regulated workplace learning , 2016, Comput. Hum. Behav..

[13]  M. Vieta Learning in Struggle: Argentina’s New Worker Cooperatives as Transformative Learning Organizations , 2014 .

[14]  Jonathan Lawry,et al.  Uncertainty modelling for vague concepts: A prototype theory approach , 2009, Artif. Intell..

[15]  Bo Feng,et al.  Evaluating knowledge management capability of organizations: a fuzzy linguistic method , 2009, Expert Syst. Appl..

[16]  Jay Verkuilen,et al.  Assigning Membership in a Fuzzy Set Analysis , 2005 .

[17]  Rafael Bello Pérez,et al.  Evaluación del impacto de la capacitación con lógica difusa , 2014 .

[18]  Joaquín Alegre,et al.  Measuring organisational learning capability among the workforce , 2007 .

[19]  A. Sánchez La participación de los trabajadores en la calidad total: nuevos dispositivos disciplinarios de organización del trabajo , 2004 .

[20]  T. B. Martín,et al.  Reflexiones en torno al constructo de la participación en las organizaciones , 1999 .

[21]  M. I. Cova,et al.  Industrial participatory action research, emergence of a research-knowledge democracy project with metal workers , 2015 .

[22]  Anlı Ataöv Democracy to become reality: Participatory planning through action research , 2007 .

[23]  Jawad Syed,et al.  Appropriation or participation of the individual in knowledge management , 2014 .

[24]  Charles C. Ragin,et al.  Set Relations in Social Research: Evaluating Their Consistency and Coverage , 2006, Political Analysis.

[25]  S. Hurtado,et al.  Aproximación a la medición del capital intelectual organizacional aplicando sistemas de lógica difusa , 2010 .

[26]  Joseph M. Firestone,et al.  Organizational learning and knowledge management: the relationship , 2004 .

[27]  Lotfi A. Zadeh,et al.  Quantitative fuzzy semantics , 1971, Inf. Sci..

[28]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[29]  I. Nonaka,et al.  The Knowledge Creating Company , 2008 .

[30]  Charles C. Ragin,et al.  Measurement Versus Calibration: A Set‐Theoretic Approach , 2008 .

[31]  Andrea D. Ellinger,et al.  Organizational learning: Perception of external environment and innovation performance , 2011 .

[32]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[33]  E. Wenger,et al.  Comunidades de práctica. Aprendizaje, significado e identidad , 2001 .

[34]  A. Feenberg Transforming Technology: A Critical Theory Revisited , 2002 .

[35]  Charles C. Ragin,et al.  Fuzzy-Set Social Science , 2001 .

[36]  Gaute Knutstad,et al.  Transforming management fashions into praxis , 2007 .

[37]  Milagros Isabel Cova,et al.  Estrategias para la participación de los trabajadores en mejoras tecnológicas asociadas a la industria metalúrgica venezolana , 2015 .

[38]  Joaquín Juan Albalate La participación de los trabajadores en la tecnología. El caso de la industria auxiliar del automóvil en Cataluña , 2004 .

[39]  Asamblea Nacional Constituyente Constitución de la República Bolivariana de Venezuela , 2009 .

[40]  Takaya Kawamura,et al.  Managing networks of communities of practice for organizational knowledge creation A Knowledge Management imperative in the era of globalization , 2007, Ann. des Télécommunications.

[41]  A. Woodside Moving beyond multiple regression analysis to algorithms: Calling for adoption of a paradigm shift from symmetric to asymmetric thinking in data analysis and crafting theory , 2013 .