THOROUGH INSIGHTS BY ENHANCED VISUALIZATION OF FLOW TOPOLOGY

The investigation of flow data can be eased by the visualizati on of topological information about the flow. Especially, when empirical models or numerical results fro m flow simulation are investigated, often the first step of analysis is to search structural elements, like fixed points, separatrices, etc. The work presented in this paper focuses on the visualization of 3D dynamical sy stems (comparable to flow data) on the basis of results which are obtained by automatic analysis of the flo w topology. Fixed points are determined and the Jacobian matrix of the flow is investigated at these point s of phase space to obtain the associated stable and/or unstable invariant sets. Furthermore, this paper pr esents how Poincaré maps are used to visualize structural information about cyclic flow data together with direct visualization cues like stream lines or stream surfaces.

[1]  Jarke J. van Wijk Flow visualization with surface particles , 1993, IEEE Computer Graphics and Applications.

[2]  Martin Rumpf,et al.  Characterizing global features of simulation data by selected local icons , 1996 .

[3]  R. Abraham,et al.  Dynamics--the geometry of behavior , 1983 .

[4]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[5]  H.-C. Hege,et al.  Interactive visualization of 3D-vector fields using illuminated stream lines , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[6]  Werner Purgathofer,et al.  Stream arrows: enhancing the use of stream surfaces for the visualization of dynamical systems , 1997, The Visual Computer.

[7]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[8]  William E. Lorensen,et al.  The stream polygon-a technique for 3D vector field visualization , 1991, Proceeding Visualization '91.

[9]  Helwig Löffelmann,et al.  DynSys3D: a workbench for developing advanced visualization techniques in the field of three-dimensional dynamical systems , 1997 .

[10]  David C. Banks,et al.  Illumination in diverse codimensions , 1994, SIGGRAPH.

[11]  Theo van Walsum,et al.  Fluid Flow Visualization , 1991, Focus on Scientific Visualization.

[12]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[13]  Nelson L. Max,et al.  Flow volumes for interactive vector field visualization , 1993, Proceedings Visualization '93.

[14]  Jeff P. Hultquist,et al.  Constructing stream surfaces in steady 3D vector fields , 1992, Proceedings Visualization '92.

[15]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[16]  Helwig Löffelmann,et al.  Hierarchical Streamarrows for the Visualization of Dynamical Systems , 1997, Visualization in Scientific Computing.

[17]  Theo van Walsum,et al.  Iconic techniques for feature visualization , 1995, Proceedings Visualization '95.

[18]  Helwig Löffelmann,et al.  Visualizing Poincaré Maps together with the Underlying Flow , 1997, VisMath.

[19]  William H. Press,et al.  Numerical recipes in C , 2002 .

[20]  J. V. van Wijk,et al.  A probe for local flow field visualization , 1993, Proceedings Visualization '93.

[21]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[22]  Helwig Löffelmann,et al.  Visualizing Dynamical Systems near Critical Points , 1998 .