Number conserving cellular automata II: dynamics

In this second part, we study the dynamics of the number conserving cellular automata. We give a classification which focuses on pattern divergence and chaoticity. Moreover we prove that in the case of number-conserving cellular automata, surjectivity is equivalent to regularity. As a byproduct we obtain a strong characterization of the class of cellular automata with bounded evolutions on finite configurations.

[1]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[2]  Michael Schreckenberg,et al.  A cellular automaton model for freeway traffic , 1992 .

[3]  M. Shereshevsky,et al.  Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms , 1993 .

[4]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[5]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[6]  Gianpiero Cattaneo,et al.  Ergodicity, transitivity, and regularity for linear cellular automata over Zm , 2000, Theor. Comput. Sci..

[7]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[8]  Gianpiero Cattaneo,et al.  Pattern Growth in Elementary Cellular Automata , 1995, Theor. Comput. Sci..

[9]  Erica Jen,et al.  Global properties of cellular automata , 1986 .

[10]  E. F. Moore Machine Models of Self-Reproduction , 1962 .

[11]  Karel Culik,et al.  On the Limit Sets of Cellular Automata , 1989, SIAM J. Comput..

[12]  Bruno Durand,et al.  Global Properties of Cellular Automata , 1999 .

[13]  Carsten Knudsen,et al.  Chaos Without Nonperiodicity , 1994 .

[14]  Pierre Tisseur,et al.  Some properties of cellular automata with equicontinuity points , 2000 .

[15]  P. Kurka Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.

[16]  Nino Boccara,et al.  Number-conserving cellular automaton rules , 1999, Fundam. Informaticae.

[17]  Gianpiero Cattaneo,et al.  Generalized Sub-Shifts in Elementary Cellular Automata: The "Strange Case" of Chaotic Rule 180 , 1998, Theor. Comput. Sci..

[18]  Jarkko Kari Rice's Theorem for the Limit Sets of Cellular Automata , 1994, Theor. Comput. Sci..

[19]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[20]  Enrico Formenti,et al.  Number-conserving cellular automata I: decidability , 2003, Theor. Comput. Sci..

[21]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[22]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[23]  Karel Culik,et al.  Undecidability of CA Classification Schemes , 1988, Complex Syst..

[24]  Giancarlo Mauri,et al.  Complex Chaotic Behavior of a Class of Subshift Cellular Automata , 1993, Complex Syst..

[25]  Eric Goles,et al.  Cellular automata and complex systems , 1999 .

[26]  Robert McNaughton,et al.  Regularity-Preserving Relations , 1976, Theor. Comput. Sci..

[27]  J. Myhill The converse of Moore’s Garden-of-Eden theorem , 1963 .