Anatomy of the Human Optic Nerve: Structure and Function

The optic nerve (ON) is constituted by the axons of the retinal ganglion cells (RGCs). These axons are distributed in an organized pattern from the soma of the RGC to the lateral geniculated nucleus (where most of the neurons synapse). The key points of the ON are the optic nerve head and chiasm. This chapter will include a detailed and updated review of the ON different parts: RGC axons, glial cells, connective tissue of the lamina cribrosa and the septum and the blood vessels derivate from the central retina artery and from the ciliary system. There will be an up-to-date description about the superficial nerve fibre layer, including their organization, and about prelaminar, laminar and retrolaminar regions, emphasizing the axoplasmic flow, glial barriers, biomechanics of the lamina cribrosa and the role of the macro- and microglia in their working.

[1]  J. Pappenheimer,et al.  Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. , 1951, The American journal of physiology.

[2]  L. Herndon,et al.  Central corneal thickness as a risk factor for advanced glaucoma damage. , 2003, Archives of ophthalmology.

[3]  A. Neufeld,et al.  Extracellular matrix of the human optic nerve head. , 1986, American journal of ophthalmology.

[4]  J. Salazar,et al.  Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma. , 2010, Investigative ophthalmology & visual science.

[5]  A. Alm,et al.  Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. , 1973, Experimental eye research.

[6]  D. Attwell,et al.  Node of Ranvier length as a potential regulator of myelinated axon conduction speed , 2017, eLife.

[7]  S. Nag Morphology and properties of astrocytes. , 2011, Methods in molecular biology.

[8]  Srinivas R Sadda,et al.  Spatial distribution of posterior pole choroidal thickness by spectral domain optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[9]  T. Chan-Ling,et al.  Concentration of astrocytic filaments at the retinal optic nerve junction is coincident with the absence of intra-retinal myelination: comparative and developmental evidence , 2000, Journal of neurocytology.

[10]  V. Perry,et al.  Inflammation in the nervous system , 1995, Current Opinion in Neurobiology.

[11]  W. Green,et al.  Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. , 1982, Archives of ophthalmology.

[12]  B L Petrig,et al.  Choroidal blood flow in the foveal region of the human ocular fundus. , 1994, Investigative ophthalmology & visual science.

[13]  Kurt Audenaert,et al.  A new glaucoma hypothesis: a role of glymphatic system dysfunction , 2015, Fluids and Barriers of the CNS.

[14]  M. Raff Glial cell diversification in the rat optic nerve. , 1989, Science.

[15]  Dao-Yi Yu,et al.  Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. , 2002, Investigative ophthalmology & visual science.

[16]  T. Imagawa,et al.  Comparative study of the lamina cribrosa and the pial septa in the vertebrate optic nerve and their relationship to the myelinated axons. , 2000, Tissue & cell.

[17]  S. Hayreh Blood-Optic Nerve Barrier , 2011 .

[18]  P. Massa,et al.  Plasmalemmal vesicles (caveolae) of fibrous astrocytes of the cat optic nerve. , 1982, The American journal of anatomy.

[19]  Holger Gerhardt,et al.  Endothelial-pericyte interactions in angiogenesis , 2003, Cell and Tissue Research.

[20]  J. Salazar,et al.  Structural Specializations of Human Retinal Glial Cells , 1996, Vision Research.

[21]  Manju Patel,et al.  A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. , 2005, Ophthalmology.

[22]  Ruaidhrí P Kirwan,et al.  Influence of cyclical mechanical strain on extracellular matrix gene expression in human lamina cribrosa cells in vitro. , 2005, Molecular vision.

[23]  H A Quigley,et al.  Quantitative studies of retinal nerve fiber layer defects. , 1982, Archives of ophthalmology.

[24]  A. Butt,et al.  Functions of optic nerve glia: axoglial signalling in physiology and pathology , 2004, Eye.

[25]  J. Forrester,et al.  The Eye: Basic Sciences in Practice , 2002 .

[26]  A. Clark,et al.  Neurotrophin and neurotrophin receptor expression by cells of the human lamina cribrosa. , 2001, Investigative ophthalmology & visual science.

[27]  B. Tillmann,et al.  The collagen architecture of the sciera — SEM and immunohistochemical studies , 1993 .

[28]  Microvasculature of the human optic nerve. , 1995 .

[29]  M. Ko,et al.  Morphological variations of the peripapillary circle of Zinn–Haller by flat section , 1999, The British journal of ophthalmology.

[30]  A. Faissner,et al.  Tenascins in Retinal and Optic Nerve Neurodegeneration , 2017, Front. Integr. Neurosci..

[31]  Douglas R. Anderson,et al.  Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head. , 1977, Investigative ophthalmology & visual science.

[32]  I. C. Michaelson Retinal Circulation in Man and Animals , 1955 .

[33]  M. Sofroniew,et al.  Astrocytes: biology and pathology , 2009, Acta Neuropathologica.

[34]  S. Dunlop,et al.  Three dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nerves , 2018, Scientific Reports.

[35]  J. Escribano ARCHIVOS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGÍA , 2010 .

[36]  M. Goldbaum,et al.  The extracellular matrix of the human optic nerve. , 1989, Archives of ophthalmology.

[37]  Young Ho Park,et al.  Influence of translaminar pressure dynamics on the position of the anterior lamina cribrosa surface. , 2015, Investigative ophthalmology & visual science.

[38]  A. Clark,et al.  Identification and localization of lamina cribrosa cells in the human optic nerve head. , 2016, Experimental eye research.

[39]  Ian A Sigal,et al.  Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry , 2009, Biomechanics and modeling in mechanobiology.

[40]  P. Henkind,et al.  Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative. , 1967, The British journal of ophthalmology.

[41]  P. Keane,et al.  Paravascular Pathways in the Eye: Is There an 'Ocular Glymphatic System'? , 2015, Investigative ophthalmology & visual science.

[42]  J. Downs,et al.  Mechanical environment of the optic nerve head in glaucoma. , 2008, Optometry and vision science : official publication of the American Academy of Optometry.

[43]  S. Hayreh,et al.  Optic disc edema in non-arteritic anterior ischemic optic neuropathy , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[44]  L. Dandona,et al.  Quantitative regional structure of the normal human lamina cribrosa. A racial comparison. , 1990, Archives of ophthalmology.

[45]  J Seddon,et al.  Increased scleral rigidity and age-related macular degeneration. , 1989, Ophthalmology.

[46]  D. Chan,et al.  Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases , 2009, Human molecular genetics.

[47]  Günther Meschke,et al.  The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach , 2011, Biomechanics and modeling in mechanobiology.

[48]  P. Marziliano,et al.  Relationship Between Peripapillary Choroid and Retinal Nerve Fiber Layer Thickness in a Population-Based Sample of Nonglaucomatous Eyes. , 2016, American journal of ophthalmology.

[49]  F. Paul,et al.  Oxidative damage to mitochondria at the nodes of Ranvier precedes axon degeneration in ex vivo transected axons , 2014, Experimental Neurology.

[50]  David J. Begley,et al.  Structure and function of the blood–brain barrier , 2010, Neurobiology of Disease.

[51]  Fábregas Batlle,et al.  Anatomia Humana I , 2017 .

[52]  S. Hayreh Non-arteritic anterior ischemic optic neuropathy: role of systemic corticosteroid therapy. , 2010, Survey of ophthalmology.

[53]  W. Streit,et al.  Reactive microgliosis , 1999, Progress in Neurobiology.

[54]  J. Salazar,et al.  Astroglial Architecture of the Human Optic Nerve: Functional Role of Astrocytes , 1998 .

[55]  B. Katz Neuro-Ophthalmology Review Manual , 1996 .

[56]  S. Hayreh Inter-individual variation in blood supply of the optic nerve head , 1985, Documenta Ophthalmologica.

[57]  P. Henkind,et al.  Symposium on glaucoma: joint meeting with the National Society for the Prevention of Blindness. New observations on the radial peripapillary capillaries. , 1967, Investigative ophthalmology.

[58]  T. Fukuchi,et al.  Sulfated proteoglycans in the human lamina cribrosa. , 1992, Investigative ophthalmology & visual science.

[59]  R. Marc,et al.  Proliferative reactive gliosis is compatible with glial metabolic support and neuronal function , 2011, BMC Neuroscience.

[60]  S. Hayreh In vivo choroidal circulation and its watershed zones , 1990, Eye.

[61]  S. Hayreh The Blood Supply of the Optic Nerve Head and the Evaluation of it — Myth and Reality , 2001, Progress in Retinal and Eye Research.

[62]  I. Tsukahara,et al.  Kuhnt intermediary tissue as a barrier between the optic nerve and retina , 1976, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[63]  P. Wostyn,et al.  Glymphatic stasis at the site of the lamina cribrosa as a potential mechanism underlying open‐angle glaucoma , 2017, Clinical & experimental ophthalmology.

[64]  A. Neufeld Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. , 1999, Archives of ophthalmology.

[65]  R L Cooper,et al.  The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. , 1995, Investigative ophthalmology & visual science.

[66]  I. Tsukahara,et al.  An electron microscopic study on the blood-optic nerve and fluid-optic nerve barrier , 1975, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[67]  Hirotaka Tanabe,et al.  CHOROID IS THINNER IN INFERIOR REGION OF OPTIC DISKS OF NORMAL EYES , 2010, Retina.

[68]  A. Cohen Is there a potential defect in the blood-retinal barrier at the choroidal level of the optic nerve canal? , 1973, Investigative ophthalmology.

[69]  M. Nedergaard,et al.  Functions of astrocytes and their potential as therapeutic targets , 2010, Neurotherapeutics.

[70]  B. Alghamdi,et al.  Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2(+) cells , 2015, Front. Neuroanat..

[71]  R. Miller,et al.  The macroglial cells of the rat optic nerve. , 1989, Annual review of neuroscience.

[72]  E. Newman A dialogue between glia and neurons in the retina: modulation of neuronal excitability. , 2004, Neuron glia biology.

[73]  G. E. Vates,et al.  A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β , 2012, Science Translational Medicine.

[74]  C. Sussman,et al.  Mechanisms of oligodendrocyte commitment in the vertebrate CNS , 1999, International Journal of Developmental Neuroscience.

[75]  W. Walz,et al.  Immunocytochemical evidence for a distinct GFAP-negative subpopulation of astrocytes in the adult rat hippocampus , 1998, Neuroscience Letters.

[76]  J. Jonas,et al.  Central corneal thickness and thickness of the lamina cribrosa and peripapillary sclera in monkeys. , 2009, Archives of ophthalmology.

[77]  Makoto Nakamura,et al.  Spectral-domain optical coherence tomography detects optic atrophy due to optic tract syndrome , 2013, Graefe's Archive for Clinical and Experimental Ophthalmology.

[78]  B. Tillmann,et al.  The collagen architecture of the sclera--SEM and immunohistochemical studies. , 1993, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[79]  G. Wollstein,et al.  The optic nerve head as a robust biomechanical system. , 2012, Investigative Ophthalmology and Visual Science.

[80]  R L Radius,et al.  Anatomy of the lamina cribrosa in human eyes. , 1981, Archives of ophthalmology.

[81]  N. Gupta,et al.  Evidence for Cerebrospinal Fluid Entry Into the Optic Nerve via a Glymphatic Pathway. , 2017, Investigative ophthalmology & visual science.

[82]  Jayanthi Sivaswamy,et al.  Measurement of Radial Peripapillary Capillary Density in the Normal Human Retina Using Optical Coherence Tomography Angiography , 2017, Journal of glaucoma.

[83]  M. Hatten,et al.  Astroglia in CNS injury , 1991, Glia.

[84]  R. Allingham,et al.  Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. , 2008, Ophthalmology.

[85]  Electron Microscopy of the Human Choroid , 1961 .

[86]  M. Raff,et al.  Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture , 1988, Nature.

[87]  A. Fryczkowski,et al.  Scanning electron microscopy of human ocular vascular casts: the submacular choriocapillaris. , 1988, Acta anatomica.

[88]  D. Easty,et al.  Age related compliance of the lamina cribrosa in human eyes , 2000, The British journal of ophthalmology.

[89]  Ian A Sigal,et al.  Predicted extension, compression and shearing of optic nerve head tissues. , 2007, Experimental eye research.

[90]  R. Schlingemann,et al.  Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions , 2013, Progress in Retinal and Eye Research.

[91]  D. R. Anderson,et al.  The course of axons through the retina and optic nerve head. , 1979, Archives of ophthalmology.

[92]  S. Hayreh Anatomy and physiology of the optic nerve head. , 1974, Transactions - American Academy of Ophthalmology and Otolaryngology. American Academy of Ophthalmology and Otolaryngology.

[93]  S. Hayreh Submacular choroidal vascular pattern , 1974, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[94]  R. Fuchshofer,et al.  The role of astrocytes in optic nerve head fibrosis in glaucoma. , 2016, Experimental eye research.

[95]  A. Warrington,et al.  The oligodendrocyte and its many cellular processes. , 1993, Trends in cell biology.

[96]  Ian A Sigal,et al.  Biomechanics of the optic nerve head. , 2009, Experimental eye research.

[97]  T. Ogden,et al.  Nerve fiber layer of the macaque retina: retinotopic organization. , 1983, Investigative ophthalmology & visual science.

[98]  M. Tso,et al.  Angioarchitecture of the human choroid. , 1987, Archives of ophthalmology.

[99]  Richard Bove The Human Eye , 2018, Nature.

[100]  M. Hernandez The optic nerve head in glaucoma: role of astrocytes in tissue remodeling , 2000, Progress in Retinal and Eye Research.

[101]  B. Grimson,et al.  Angioarchitecture of the ciliary artery circulation of the posterior pole. , 1981, Archives of ophthalmology.

[102]  J. Wadsworth The uveal tract. , 1957, A.M.A. archives of ophthalmology.

[103]  Andrew P. Voorhees,et al.  Lamina Cribrosa Pore Shape and Size as Predictors of Neural Tissue Mechanical Insult , 2017, Investigative ophthalmology & visual science.

[104]  Y. Ikuno,et al.  Choroidal thickness in healthy Japanese subjects. , 2010, Investigative ophthalmology & visual science.

[105]  J. Morrison,et al.  Chapter 8 Anatomy and Physiology of the Optic Nerve , 2003 .

[106]  E. Friedman,et al.  The role of the atherosclerotic process in the pathogenesis of age-related macular degeneration. , 2000, American journal of ophthalmology.

[107]  J. Jonas,et al.  Central corneal thickness, lamina cribrosa and peripapillary scleral histomorphometry in non-glaucomatous chinese eyes , 2010, Graefe's Archive for Clinical and Experimental Ophthalmology.

[108]  Peter Wiedemann,et al.  Müller cells in the healthy and diseased retina , 2006, Progress in Retinal and Eye Research.

[109]  C. O'brien,et al.  The role of lamina cribrosa cells in optic nerve head fibrosis in glaucoma. , 2016, Experimental eye research.

[110]  M. D. Roberts,et al.  Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism. , 2011, Experimental eye research.

[111]  J. Salazar,et al.  Immunohistochemical Study of Human Optic Nerve Head Astroglia , 1996, Vision Research.

[112]  Tin Aung,et al.  Peripapillary choroidal thickness assessed using automated choroidal segmentation software in an Asian population , 2015, British Journal of Ophthalmology.

[113]  P. Steart,et al.  The structure of the lamina cribrosa of the human eye: An immunocytochemical and electron microscopical study , 1990, Eye.

[114]  Tian Feng,et al.  Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. , 2013, The Journal of clinical investigation.

[115]  Herbert A. Reitsamer,et al.  Brain and Retinal Pericytes: Origin, Function and Role , 2016, Front. Cell. Neurosci..

[116]  J. Salazar,et al.  Rod-Like Microglia Are Restricted to Eyes with Laser-Induced Ocular Hypertension but Absent from the Microglial Changes in the Contralateral Untreated Eye , 2013, PloS one.

[117]  Jie Ying Gao,et al.  The importance of intermediate filaments in the adaptation of tissues to mechanical stress: evidence from gene knockout studies. , 1997, Biology of the cell.

[118]  J. Rombout,et al.  An immunocytochemical and electron-microscopical study of endocrine cells in the gut and pancreas of a stomachless teleost fish, Barbus conchonius (Cyprinidae) , 2004, Cell and Tissue Research.

[119]  S. Hayreh Blood Supply of the Optic Nerve , 2011 .

[120]  A. Neufeld,et al.  Localization of collagen types I and IV mRNAs in human optic nerve head by in situ hybridization. , 1991, Investigative ophthalmology & visual science.

[121]  R. T. Hart,et al.  The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage , 2005, Progress in Retinal and Eye Research.

[122]  R. S. Smith,et al.  Myelinated nerve fibers: computed effect of myelin thickness on conduction velocity. , 1970, The American journal of physiology.

[123]  S. Hayreh The long posterior ciliary arteries , 2004, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[124]  Morphometric features of laminar pores in lamina cribrosa observed by scanning laser ophthalmoscopy. , 1999, Japanese journal of ophthalmology.

[125]  S M Podos,et al.  Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. , 1996, Archives of ophthalmology.

[126]  T. Fitzgibbon The human fetal retinal nerve fiber layer and optic nerve head: A DiI and DiA tracing study , 1997, Visual Neuroscience.

[127]  S. Waxman,et al.  Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations , 1984, The Journal of comparative neurology.

[128]  J. Flammer,et al.  Does the blood-brain barrier play a role in Glaucoma? , 2007, Survey of ophthalmology.

[129]  Eugene Wolff,et al.  Wolff's anatomy of the eye and orbit , 1997 .

[130]  M. Hazelton,et al.  Retinal venous pulsation in glaucoma and glaucoma suspects. , 2004, Ophthalmology.

[131]  Chris A. Johnson,et al.  The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. , 2002 .

[132]  J. Jonas,et al.  Ophthalmoscopic evaluation of the optic nerve head. , 1999, Survey of ophthalmology.

[133]  M. Verhaar,et al.  The complex mural cell: pericyte function in health and disease. , 2015, International journal of cardiology.

[134]  S S Hayreh,et al.  Segmental nature of the choroidal vasculature. , 1975, The British journal of ophthalmology.

[135]  P. Humphries,et al.  Manipulating ocular endothelial tight junctions: Applications in treatment of retinal disease pathology and ocular hypertension , 2017, Progress in Retinal and Eye Research.

[136]  S. Hayreh,et al.  Occlusion of the vortex veins. An experimental study. , 1973, The British journal of ophthalmology.

[137]  J. Jonas,et al.  Pattern of glaucomatous neuroretinal rim loss. , 1993, Ophthalmology.

[138]  P. Kaufman,et al.  Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure. , 2001, Investigative ophthalmology & visual science.

[139]  P. D. De Deyn,et al.  Glaucoma considered as an imbalance between production and clearance of neurotoxins. , 2014, Investigative ophthalmology & visual science.

[140]  Dao-Yi Yu,et al.  Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. , 2014, Experimental eye research.

[141]  James E Morgan,et al.  Optic nerve head structure in glaucoma: Astrocytes as mediators of axonal damage , 2000, Eye.

[142]  D. Dahl,et al.  Immunolabeling of carbonic anhydrase isoenzyme C and glial fibrillary acidic protein in paraffin-embedded tissue sections of human brain and retina. , 1983, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[143]  S. F. Taylor,et al.  Retinotopy of the human retinal nerve fibre layer and optic nerve head , 1996, The Journal of comparative neurology.

[144]  A. Di Polo,et al.  Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Müller cells temporarily rescues injured retinal ganglion cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[145]  C. Burgoyne A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. , 2011, Experimental eye research.

[146]  Robert H Miller,et al.  Glial cell migration directed by axon guidance cues , 2002, Trends in Neurosciences.

[147]  I. Constable,et al.  The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. , 1998, Investigative ophthalmology & visual science.

[148]  J. Salazar,et al.  IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma , 2012, Journal of Neuroinflammation.

[149]  S. Kimura The uveal tract. , 1962, Archives of ophthalmology.

[150]  J. Stone,et al.  The role of müller cells in the formation of the blood-retinal barrier , 1993, Neuroscience.

[151]  Michael F. Land,et al.  The Human Eye: Structure and Function , 1999, Nature Medicine.

[152]  H A Quigley,et al.  Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. , 1981, Archives of ophthalmology.

[153]  H. Quigley Gap junctions between optic nerve head astrocytes. , 1977, Investigative ophthalmology & visual science.

[154]  S. Hayreh The sheath of the optic nerve. , 1984, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[155]  D. Ducournau A new technique for the anatomical study of the choroidal blood vessels. , 1982, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[156]  D. Minckler The organization of nerve fiber bundles in the primate optic nerve head. , 1980, Archives of ophthalmology.

[157]  Club Jules Gonin,et al.  Graefe's archive for clinical and experimental ophthalmology , 1982 .

[158]  J. Jonas,et al.  Morphometry of the human lamina cribrosa surface. , 1991, Investigative ophthalmology & visual science.

[159]  S. Hayreh Posterior ischaemic optic neuropathy: clinical features, pathogenesis, and management , 2004, Eye.

[160]  Paul Bach-y-Rita,et al.  The cost of an action potential , 2000, Journal of Neuroscience Methods.

[161]  Jost B Jonas,et al.  Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. , 2003, Investigative ophthalmology & visual science.

[162]  M. Tso,et al.  Is there a blood-brain barrier at the optic nerve head? , 1975, Archives of ophthalmology.

[163]  Xiulan Zhang,et al.  Peripapillary choroidal thickness in healthy Chinese subjects , 2013, BMC Ophthalmology.

[164]  S. Hayreh Controversies on submacular choroidal circulation. , 1981, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[165]  D. Antonetti,et al.  The inner blood-retinal barrier: Cellular basis and development , 2017, Vision Research.

[166]  C. O'brien,et al.  Life under pressure: The role of ocular cribriform cells in preventing glaucoma. , 2016, Experimental eye research.

[167]  F. Vanderwerf,et al.  Lack of blood-brain barrier properties in microvessels of the prelaminar optic nerve head. , 2001, Investigative ophthalmology & visual science.

[168]  D. Worthen,et al.  Histology of the Human Eye. , 1972 .

[169]  J. Jonas,et al.  Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length. , 2009, Investigative ophthalmology & visual science.

[170]  Takashi Kojima,et al.  Transmembrane proteins of tight junctions. , 2008, Biochimica et biophysica acta.

[171]  J. Ernest Vasculature of the Anterior Optic Nerve , 1976 .

[172]  H. Bauer,et al.  The Dual Role of Zonula Occludens (ZO) Proteins , 2010, Journal of biomedicine & biotechnology.

[173]  M. Hazelton,et al.  Structural characteristics of the optic nerve head influencing human retinal venous pulsations. , 2016, Experimental eye research.

[174]  S. Waxman Determinants of conduction velocity in myelinated nerve fibers , 1980, Muscle & nerve.