Inconsistent channel bandwidth estimates suggest winner-take-all nonlinearity in second-order vision

[1]  M. Landy,et al.  Orientation-selective adaptation to first- and second-order patterns in human visual cortex. , 2006, Journal of neurophysiology.

[2]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[3]  M. Landy,et al.  Noise masking reveals channels for second-order letters , 2006, Vision Research.

[4]  M. Landy,et al.  Properties of second-order spatial frequency channels , 2002, Vision Research.

[5]  Denis G. Pelli,et al.  The visual filter mediating letter identification , 1994, Nature.

[6]  N. Graham Non-linearities in texture segregation. , 1994, Ciba Foundation symposium.

[7]  J. Beck,et al.  Contrast and spatial variables in texture segregation: Testing a simple spatial-frequency channels model , 1989, Perception & psychophysics.

[8]  Michael S. Landy,et al.  Nonadditivity of masking by narrow-band noises , 1991, Vision Research.

[9]  D Regan,et al.  Orientation-tuned spatial filters for texture-defined form , 1998, Vision Research.

[10]  N. Graham Visual Pattern Analyzers , 1989 .

[11]  N. Graham,et al.  Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision , 2000, Vision Research.

[12]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[13]  K. T. Blackwell,et al.  The effect of white and filtered noise on contrast detection thresholds , 1998, Vision Research.

[14]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  Vision Research , 1961, Nature.

[16]  David R. Badcock,et al.  Detection of spatial beats: Non-linearity or contrast increment detection? , 1986, Vision Research.

[17]  S. Dakin,et al.  Sensitivity to contrast modulation depends on carrier spatial frequency and orientation , 2000, Vision Research.

[18]  M. Georgeson,et al.  Sensitivity to modulations of luminance and contrast in visual white noise: separate mechanisms with similar behaviour , 1999, Vision Research.

[19]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[20]  Michael S. Landy,et al.  Exogenous attention enhances 2nd-order contrast sensitivity , 2011, Vision Research.

[21]  J. Bergen,et al.  Computational Modeling of Visual Texture Segregation , 1991 .

[22]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  M. Georgeson,et al.  Does early non-linearity account for second-order motion? , 1999, Vision Research.

[24]  L. E. Hallum,et al.  Human primary visual cortex (V1) is selective for second-order spatial frequency. , 2011, Journal of neurophysiology.

[25]  E. Adelson,et al.  Early vision and texture perception , 1988, Nature.

[26]  J. J. Koenderink,et al.  Contrast detection and detection of contrast modulation for noise gratings , 1985, Vision Research.

[27]  I. Ohzawa,et al.  Surround suppression of V1 neurons mediates orientation-based representation of high-order visual features. , 2009, Journal of neurophysiology.

[28]  L. Maloney Confidence intervals for the parameters of psychometric functions , 1990, Perception & psychophysics.

[29]  F. Kingdom,et al.  Modulation frequency and orientation tuning of second-order texture mechanisms. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  M. Georgeson,et al.  Sensitivity to contrast modulation: the spatial frequency dependence of second-order vision , 2003, Vision Research.

[31]  D. Sagi,et al.  Gabor filters as texture discriminator , 1989, Biological Cybernetics.

[32]  D. Pelli,et al.  The role of spatial frequency channels in letter identification , 2002, Vision Research.

[33]  F. Kingdom,et al.  Orientation opponency in human vision revealed by energy-frequency analysis , 2003, Vision Research.

[34]  G. Henning,et al.  Effects of different hypothetical detection mechanisms on the shape of spatial-frequency filters inferred from masking experiments: I. Noise masks. , 1981, Journal of the Optical Society of America.

[35]  Harriet A. Allen,et al.  Second-order spatial frequency and orientation channels in human vision , 2006, Vision Research.

[36]  J. Robson,et al.  Discrimination at threshold: Labelled detectors in human vision , 1981, Vision Research.

[37]  M. Landy,et al.  Critical-band masking estimation of 2nd-order filter orientation bandwidth , 2010 .

[38]  J. Bergen,et al.  Texture segregation and orientation gradient , 1991, Vision Research.

[39]  F. Kingdom,et al.  Sensitivity to orientation modulation in micropattern-based textures , 1995, Vision Research.

[40]  J. Nachmias,et al.  Masking by spatially-modulated gratings , 1983, Vision Research.

[41]  I. Motoyoshi,et al.  Cross-orientation summation in texture segregation , 2004, Vision Research.

[42]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[43]  G. Sperling,et al.  Measuring the spatial frequency selectivity of second-order texture mechanisms , 1995, Vision Research.

[44]  ILONA KOVÁCS,et al.  Non-Fourier Information in Bandpass Noise Patterns , 1997, Vision Research.

[45]  N. Graham,et al.  Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation , 1993, Vision Research.

[46]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .