Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals.

We demonstrate a resonant optical trapping mechanism based on two-dimensional hollow photonic crystal cavities. This approach benefits simultaneously from the resonant nature and unprecedented field overlap with the trapped specimen. The photonic crystal structures are implemented in a 30 mm × 12 mm optofluidic chip consisting of a patterned silicon substrate and an ultrathin microfluidic membrane for particle injection and control. Firstly, we demonstrate permanent trapping of single 250 and 500 nm-sized particles with sub-mW powers. Secondly, the particle induces a large resonance shift of the cavity mode amounting up to several linewidths. This shift is exploited to detect the presence of a particle within the trap and to retrieve information on the trapped particle. The individual addressability of multiple cavities on a single photonic crystal device is also demonstrated.

[1]  Robert R. Alfano,et al.  Bacteria size determination by elastic light scattering , 2003 .

[2]  A. Ashkin,et al.  Internal cell manipulation using infrared laser traps. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[3]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[4]  Jean-Michel Claverie,et al.  A Giant Virus in Amoebae , 2003, Science.

[5]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[6]  T. Krauss,et al.  Chemical sensing in slotted photonic crystal heterostructure cavities , 2009 .

[7]  M. Lipson,et al.  Optofluidic trapping and transport on solid core waveguides within a microfluidic device. , 2007, Optics express.

[8]  D. Tsai,et al.  Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation , 2012, Nature Communications.

[9]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[10]  Emmanuel Picard,et al.  Assembly of microparticles by optical trapping with a photonic crystal nanocavity , 2012 .

[11]  Georg Rossbach,et al.  High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate , 2012 .

[12]  Demetri Psaltis,et al.  Optofluidics for energy applications , 2011, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[13]  L. Forró,et al.  Resonances arising from hydrodynamic memory in Brownian motion , 2011, Nature.

[14]  D. Englund,et al.  A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array , 2012 .

[15]  Dennis W. Prather,et al.  Photonic Crystals: Theory, Applications and Fabrication , 2009 .

[16]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[17]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[18]  Masaya Notomi,et al.  Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode. , 2004, Optics express.

[19]  Balpreet Singh Ahluwalia,et al.  Surface transport and stable trapping of particles and cells by an optical waveguide loop. , 2012, Lab on a chip.

[20]  J. Tully,et al.  A NEWLY DISCOVERED MYCOPLASMA IN THE HUMAN UROGENITAL TRACT , 1981, The Lancet.

[21]  Romuald Houdré,et al.  Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity. , 2013, Physical review letters.

[22]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[23]  J. Briggs,et al.  Structural organization of authentic, mature HIV‐1 virions and cores , 2003, The EMBO journal.

[24]  Hong Cai,et al.  Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip. , 2012, Lab on a chip.

[25]  Y. Vlasov,et al.  High Resolution On-chip Spectroscopy Based on Miniaturized Microdonut Resonators References and Links , 2022 .

[26]  H. P. Lee,et al.  Optofluidic variable-focus lenses for light manipulation. , 2012, Lab on a chip.

[27]  Romuald Houdré,et al.  Refractive index sensing with an air-slot photonic crystal nanocavity. , 2010, Optics letters.

[28]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[29]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[30]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[31]  Manipulation of dielectric particles using photonic crystal cavities , 2006 .

[32]  George M. Whitesides,et al.  Integrated fluorescent light source for optofluidic applications , 2005 .

[33]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[34]  K. Crozier,et al.  Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles. , 2011, Lab on a chip.

[35]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[36]  H. Altug,et al.  An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. , 2010, Nano letters.

[37]  Bill Bynum,et al.  Lancet , 2015, The Lancet.

[38]  E. Stelzer,et al.  Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. , 1997, Journal of structural biology.

[39]  David Erickson,et al.  Nanomanipulation using silicon photonic crystal resonators. , 2010, Nano letters.

[40]  S. Bassnett On the mechanism of organelle degradation in the vertebrate lens. , 2009, Experimental eye research.

[41]  P. Fauchet,et al.  Nanoscale microcavity sensor for single particle detection. , 2007, Optics letters.

[42]  Sebastian J Maerkl,et al.  Integration of plasmonic trapping in a microfluidic environment. , 2009, Optics express.

[43]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.