A formula for certain inverse Kazhdan-Lusztig polynomials in Sn
暂无分享,去创建一个
[1] Francesco Brenti,et al. Upper and Lower Bounds for Kazhdan-Lusztig Polynomials , 1998, Eur. J. Comb..
[2] N. Gonciulea. Singular Loci of Varieties of Complexes, II☆ , 2001 .
[3] Sara Billey,et al. Singular Loci of Schubert Varieties , 2000 .
[4] P. Polo. Construction of arbitrary Kazhdan-Lusztig polynomials in symmetric groups , 1999 .
[5] A. Lascoux. Polynômes de Kazhdan-Lusztig pour les variétés de Schubert vexillaires , 1995 .
[6] Vinay V. Deodhar. Local poincaré duality and non-singularity of schubert varieties , 1985 .
[7] Isaac Leroy Hines. Symmetric functions , 2021, Tau Functions and their Applications.
[8] C. Contou-Carrère. Le lieu singulier des variétés de Schubert , 1988 .
[9] D. Kazhdan,et al. Representations of Coxeter groups and Hecke algebras , 1979 .
[10] Vinay V. Deodhar. A brief survey of Kazhdan-Lusztig theory and related topics , 1994 .
[11] W. Fulton. Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .
[12] J. Humphreys. Reflection groups and coxeter groups , 1990 .
[13] V. Lakshmibai. Singular loci of varieties of complexes , 2000 .
[14] Laurent Manivel,et al. Symmetric Functions Schubert Polynomials and Degeneracy Loci , 2001 .
[15] A. V. Zelevinskii. Small resolutions of singularities of Schubert varieties , 1983 .
[16] David Kazhdan,et al. Schubert varieties and Poincar'e duality , 1980 .
[17] Maximal singular loci of Schubert varieties in $SL(n)/B$ , 2001, math/0102168.
[18] Sara Billey,et al. On the Singular Locus of a Schubert Variety , 1984 .