A formula for certain inverse Kazhdan-Lusztig polynomials in Sn

Let w0 denote the permutation [n, n - 1, ..., 2, 1]. We give a new explicit formula for the Kazhdan-Lusztig polynomials Pw0w,w0x in Sn when x indexes an irreducible component of the singular locus of the Schubert variety Xw. To do this, we utilize a standard identity that relates Px,w and Pw0w,w0x.

[1]  Francesco Brenti,et al.  Upper and Lower Bounds for Kazhdan-Lusztig Polynomials , 1998, Eur. J. Comb..

[2]  N. Gonciulea Singular Loci of Varieties of Complexes, II☆ , 2001 .

[3]  Sara Billey,et al.  Singular Loci of Schubert Varieties , 2000 .

[4]  P. Polo Construction of arbitrary Kazhdan-Lusztig polynomials in symmetric groups , 1999 .

[5]  A. Lascoux Polynômes de Kazhdan-Lusztig pour les variétés de Schubert vexillaires , 1995 .

[6]  Vinay V. Deodhar Local poincaré duality and non-singularity of schubert varieties , 1985 .

[7]  Isaac Leroy Hines Symmetric functions , 2021, Tau Functions and their Applications.

[8]  C. Contou-Carrère Le lieu singulier des variétés de Schubert , 1988 .

[9]  D. Kazhdan,et al.  Representations of Coxeter groups and Hecke algebras , 1979 .

[10]  Vinay V. Deodhar A brief survey of Kazhdan-Lusztig theory and related topics , 1994 .

[11]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[12]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[13]  V. Lakshmibai Singular loci of varieties of complexes , 2000 .

[14]  Laurent Manivel,et al.  Symmetric Functions Schubert Polynomials and Degeneracy Loci , 2001 .

[15]  A. V. Zelevinskii Small resolutions of singularities of Schubert varieties , 1983 .

[16]  David Kazhdan,et al.  Schubert varieties and Poincar'e duality , 1980 .

[17]  Maximal singular loci of Schubert varieties in $SL(n)/B$ , 2001, math/0102168.

[18]  Sara Billey,et al.  On the Singular Locus of a Schubert Variety , 1984 .