Experimental quantum teleportation of a two-qubit composite system

Quantum teleportation1, a way to transfer the state of a quantum system from one location to another, is central to quantum communication2 and plays an important role in a number of quantum computation protocols3,4,5. Previous experimental demonstrations have been implemented with single photonic6,7,8,9,10,11 or ionic qubits12,13. However, teleportation of single qubits is insufficient for a large-scale realization of quantum communication and computation2,3,4,5. Here, we present the experimental realization of quantum teleportation of a two-qubit composite system. In the experiment, we develop and exploit a six-photon interferometer to teleport an arbitrary polarization state of two photons. The observed teleportation fidelities for different initial states are all well beyond the state estimation limit of 0.40 for a two-qubit system14. Not only does our six-photon interferometer provide an important step towards teleportation of a complex system, it will also enable future experimental investigations on a number of fundamental quantum communication and computation protocols3,15,16,17,18.

[1]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[2]  Jian-Wei Pan,et al.  Greenberger-Horne-Zeilinger-state analyzer , 1998 .

[3]  Wolfgang Mathis,et al.  Generating a four-photon polarization-entangled cluster state , 2005 .

[4]  Lee,et al.  Entanglement teleportation via werner states , 2000, Physical review letters.

[5]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[6]  K.J.Resch,et al.  Experimental One-Way Quantum Computing , 2005, quant-ph/0503126.

[7]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[8]  A. Hayashi,et al.  Reexamination of optimal quantum state estimation of pure states (5 pages) , 2004, quant-ph/0410207.

[9]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[10]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[11]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[12]  A. Zeilinger,et al.  Communications: Quantum teleportation across the Danube , 2004, Nature.

[13]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[14]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[15]  J. D. Franson,et al.  Quantum relays and noise suppression using linear optics , 2002 .

[16]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[17]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[18]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[19]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[20]  G. Rigolin Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement , 2004, quant-ph/0407219.

[21]  N. Gisin,et al.  Long-distance teleportation of qubits at telecommunication wavelengths , 2003, Nature.

[22]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[23]  Lov K. Grover Quantum Telecomputation , 1997 .

[24]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[25]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[26]  G Weihs,et al.  Experimental demonstration of four-photon entanglement and high-fidelity teleportation. , 2001, Physical review letters.

[27]  H. Weinfurter,et al.  Entangling Photons Radiated by Independent Pulsed Sources a , 1995 .