Contrastive autoencoder for anomaly detection in multivariate time series

[1]  Jie Chen,et al.  Graph-Augmented Normalizing Flows for Anomaly Detection of Multiple Time Series , 2022, ICLR.

[2]  N. Jennings,et al.  TranAD , 2022, Proceedings of the VLDB Endowment.

[3]  Lei Zhu,et al.  Cognitive multi-modal consistent hashing with flexible semantic transformation , 2022, Inf. Process. Manag..

[4]  Jianmin Wang,et al.  Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy , 2021, ICLR.

[5]  Tomer Lancewicki,et al.  Practical Approach to Asynchronous Multivariate Time Series Anomaly Detection and Localization , 2021, KDD.

[6]  Zhenghua Chen,et al.  Time-Series Representation Learning via Temporal and Contextual Contrasting , 2021, IJCAI.

[7]  Yu Tong,et al.  TS2Vec: Towards Universal Representation of Time Series , 2021, AAAI.

[8]  Xuying Meng,et al.  Semi-supervised anomaly detection in dynamic communication networks , 2021, Inf. Sci..

[9]  Zhen Xu,et al.  SDFVAE: Static and Dynamic Factorized VAE for Anomaly Detection of Multivariate CDN KPIs , 2021, WWW.

[10]  Xiuzhen Cheng,et al.  Learning Graph Structures With Transformer for Multivariate Time-Series Anomaly Detection in IoT , 2021, IEEE Internet of Things Journal.

[11]  Maria A. Zuluaga,et al.  USAD: UnSupervised Anomaly Detection on Multivariate Time Series , 2020, KDD.

[12]  Elsayed A. Elsayed,et al.  Generalized support vector data description for anomaly detection , 2020, Pattern Recognit..

[13]  Cho-Jui Hsieh,et al.  Learning to Encode Position for Transformer with Continuous Dynamical Model , 2020, ICML.

[14]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[15]  Ross B. Girshick,et al.  Momentum Contrast for Unsupervised Visual Representation Learning , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Wei Sun,et al.  Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network , 2019, KDD.

[17]  Wenjing Jia,et al.  Intrusion detection model of wireless sensor networks based on game theory and an autoregressive model , 2019, Inf. Sci..

[18]  Valentino Constantinou,et al.  Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding , 2018, KDD.

[19]  Charles C. Kemp,et al.  A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder , 2017, IEEE Robotics and Automation Letters.

[20]  Hokeun Kim,et al.  A multimodal execution monitor with anomaly classification for robot-assisted feeding , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[21]  Christopher Leckie,et al.  High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning , 2016, Pattern Recognit..

[22]  Dan Pei,et al.  Opprentice: Towards Practical and Automatic Anomaly Detection Through Machine Learning , 2015, Internet Measurement Conference.

[23]  Piroska Haller,et al.  Data clustering-based anomaly detection in industrial control systems , 2014, 2014 IEEE 10th International Conference on Intelligent Computer Communication and Processing (ICCP).

[24]  Y. Zhang,et al.  – 20 Statistics-based outlier detection for wireless sensor networks , 2012 .

[25]  David J. Hill,et al.  Anomaly detection in streaming environmental sensor data: A data-driven modeling approach , 2010, Environ. Model. Softw..

[26]  Zhi-Hua Zhou,et al.  Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[27]  Hans-Peter Kriegel,et al.  Angle-based outlier detection in high-dimensional data , 2008, KDD.

[28]  Ya-Ju Fan,et al.  On the Time Series $K$-Nearest Neighbor Classification of Abnormal Brain Activity , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[29]  Taeshik Shon,et al.  A hybrid machine learning approach to network anomaly detection , 2007, Inf. Sci..

[30]  Martin Meckesheimer,et al.  Automatic outlier detection for time series: an application to sensor data , 2007, Knowledge and Information Systems.

[31]  Eamonn J. Keogh,et al.  HOT SAX: efficiently finding the most unusual time series subsequence , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[32]  Andreas Dengel,et al.  DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series , 2019, IEEE Access.

[33]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..