On analyticity of travelling water waves

In this paper we establish the existence and analyticity of periodic solutions of a classical free-boundary model of the evolution of three-dimensional, capillary–gravity waves on the surface of an ideal fluid. The result is achieved through the application of bifurcation theory to a boundary perturbation formulation of the problem, and it yields analyticity jointly with respect to the perturbation parameter and the spatial variables. The travelling waves we find can be interpreted as resulting from the (nonlinear) interaction of two two-dimensional wavetrains, giving rise to a periodic travelling pattern. Our analyticity theorem extends the most sophisticated results known to date in the absence of resonance; ‘short crested waves’, which result from the interaction of two wavetrains with unit amplitude ratio are realized as a special case. Our method of proof also sheds light on the convergence and conditioning properties of classical boundary perturbation methods for the numerical approximation of travelling surface waves. Indeed, we demonstrate that the rather unstable numerical behaviour of these approaches can be attributed to the strong but subtle cancellations in the formulas underlying their classical implementations. These observations motivate the derivation and use of an alternative, stable, formulation which, in addition to providing our method of proof, suggests new stabilized implementations of boundary perturbation algorithms.

[1]  Frédéric Dias,et al.  NONLINEAR GRAVITY AND CAPILLARY-GRAVITY WAVES , 1999 .

[2]  Anthony J. Roberts,et al.  Highly nonlinear short-crested water waves , 1983, Journal of Fluid Mechanics.

[3]  T. Levi-Civita,et al.  Détermination rigoureuse des ondes permanentes d'ampleur finie , 1925 .

[4]  Walter Craig,et al.  Traveling Two and Three Dimensional Capillary Gravity Water Waves , 2000, SIAM J. Math. Anal..

[5]  L. Schwartz Computer extension and analytic continuation of Stokes’ expansion for gravity waves , 1974, Journal of Fluid Mechanics.

[6]  D. J. Struik Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie , 1926 .

[7]  R. Varga,et al.  Proof of Theorem 4 , 1983 .

[8]  Fernando Reitich,et al.  Shape deformations in rough-surface scattering: improved algorithms. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  J. Bona,et al.  Decay and analyticity of solitary waves , 1997 .

[10]  Walter Craig,et al.  Traveling gravity water waves in two and three dimensions , 2002 .

[11]  Fernando Reitich,et al.  Digital Object Identifier (DOI) 10.1007/s002110200399 Analytic continuation of Dirichlet-Neumann operators , 2022 .

[12]  J. Toland,et al.  The bifurcation and secondary bifurcation of capillary-gravity waves , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  H. Reinhard,et al.  Equations aux dérivées partielles , 1987 .

[14]  H. Lewy,et al.  A note on harmonic functions and a hydrodynamical application , 1952 .

[15]  Walter Craig,et al.  Numerical simulation of gravity waves , 1993 .

[16]  Fernando Reitich,et al.  Shape deformations in rough-surface scattering: cancellations, conditioning, and convergence. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  E. N. Dancer,et al.  The Sub-Harmonic Bifurcation of Stokes Waves , 2000 .

[18]  Properties of short-crested waves in water of finite depth , 1987, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[19]  J. Toland,et al.  Symmetry and the bifurcation of capillary-gravity waves , 1986 .

[20]  A. Matei,et al.  Sur la régularité des ondes progressives à la surface de l'eau , 2003 .

[21]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[22]  A. Matei The Neumann problem for free boundaries in two dimensions , 2002 .

[23]  J. Reeder,et al.  On Wilton ripples, II: Rigorous results , 1981 .

[24]  M. Morini,et al.  On optimal regularity of free boundary problems and a conjecture of De Giorgi , 2005 .

[25]  A. Mielke,et al.  A spatial dynamics approach to three-dimensional gravity-capillary steady water waves , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[27]  Anthony J. Roberts,et al.  The calculation of nonlinear short‐crested gravity waves , 1983 .

[28]  Fernando Reitich,et al.  Stability of High-Order Perturbative Methods for the Computation of Dirichlet-Neumann Operators , 2001 .

[29]  J. Reeder,et al.  Three-dimensional, nonlinear wave interaction in water of constant depth☆ , 1981 .

[30]  Fernando Reitich,et al.  A new approach to analyticity of Dirichlet-Neumann operators , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[31]  J. Toland On the existence of a wave of greatest height and Stokes’s conjecture , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  An existence theory for three-dimensional periodic travelling gravity-capillary water waves with bounded transverse profiles , 2001 .