A Monolithic Micro-Tensile Tester for Investigating Silicon Dioxide Polymorph Micromechanics, Fabricated and Operated Using a Femtosecond Laser

Mechanical testing of materials at the microscales is challenging. It requires delicate procedures not only for producing and handling the specimen to be tested, but also for applying an accurate and controlled force. This endeavor is even more challenging when it comes to investigating the behavior of brittle materials such as glass. Here, we present a microtensile tester for investigating silica glass polymorphs. The instrument is entirely made of silica and for which the same femtosecond laser is not only used for fabricating the device, but also for operating it (loading the specimen) as well as for performing in situ measurements. As a proof-of-concept, we present a stress-strain curve of fused silica for unprecedented high tensile stress of 2.4 GPa, as well as preliminary results of the elastic modulus of femtosecond laser-affected zones of fused silica, providing new insights on their microstructures and mechanical behavior.

[1]  J. Nishii,et al.  Femtosecond laser-assisted three-dimensional microfabrication in silica. , 2001, Optics letters.

[2]  Simon Henein,et al.  Conception des structures articulées à guidages flexibles de haute précision , 2000 .

[3]  Mark S. Braiman,et al.  Vibrational Spectroscopy of Biological and Polymeric Materials , 2005 .

[4]  M. A. Haque,et al.  Microscale materials testing using MEMS actuators , 2001 .

[5]  Thomas Schenk,et al.  Investigation of mechanical properties of gold thin films using a bulge test technique , 2010 .

[6]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[7]  N. Guzelsu,et al.  A shear-lag model to account for interaction effects between inclusions in composites reinforced with rectangular platelets , 2000 .

[8]  Eric Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[9]  Yves Bellouard,et al.  Femtosecond laser-based production of 3D micro- and nano- devices in transparent substrate: a step toward system-materials , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[10]  John Canning,et al.  Ultrafast nanoporous silica formation driven by femtosecond laser irradiation , 2013 .

[11]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[12]  R. Doremus,et al.  Handbook of glass properties , 1986 .

[13]  Yves Bellouard,et al.  Monolithic transparent 3D dielectrophoretic micro-actuator fabricated by femtosecond laser , 2015 .

[14]  Alexander Jesacher,et al.  Three-dimensional imaging of direct-written photonic structures. , 2010, Optics letters.

[15]  Yi Liu,et al.  Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica , 2005 .

[16]  Yves Bellouard,et al.  Optical classification of algae species with a glass lab-on-a-chip. , 2012, Lab on a chip.

[17]  William N. Sharpe,et al.  Microscale Characterization of Mechanical Properties , 2007 .

[18]  F Célarié,et al.  Glass breaks like metal, but at the nanometer scale. , 2003, Physical review letters.

[19]  K. Phani,et al.  Young's modulus of porous brittle solids , 1987 .

[20]  Martin Ams,et al.  Direct laser written waveguide-Bragg gratings in bulk fused silica. , 2006, Optics letters.

[21]  W. Gabauer,et al.  Determination of Uncertainties in Tensile Testing , 2003 .

[22]  John A. Nairn,et al.  On the Use of Shear-Lag Methods for Analysis of Stress Transfer in Unidirectional Composites , 1997 .

[23]  Charles R. Kurkjian,et al.  Strength of 0.04–50‐m lengths of coated fused silica fibers , 1976 .

[24]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[25]  Eric Mazur,et al.  Micromachining and material change characterization using femtosecond laser oscillators , 2002, SPIE LASE.

[26]  C. Schuh Nanoindentation studies of materials , 2006 .

[27]  John Parthenios,et al.  Subjecting a graphene monolayer to tension and compression. , 2009, Small.

[28]  Yves Bellouard,et al.  Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses. , 2006, Optics express.

[29]  S. D. Senturia,et al.  Correction To "M-test: A Test Chip For Mems Material Property Measurement Using Electrostatically Actuated Test Structures" , 1997 .

[30]  Y. Shimotsuma,et al.  Self-organized nanogratings in glass irradiated by ultrashort light pulses. , 2003, Physical review letters.

[31]  V. T. Srikar,et al.  A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems , 2003 .

[32]  K. Petersen,et al.  Young’s modulus measurements of thin films using micromechanics , 1979 .

[33]  Hong Wang,et al.  A micro-tensile method for measuring mechanical properties of MEMS materials , 2008 .

[34]  Julia R. Greer,et al.  Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients , 2005 .

[35]  James H. Stathis,et al.  Reliability limits for the gate insulator in CMOS technology , 2002, IBM J. Res. Dev..

[36]  D. M. Marsh Plastic flow and fracture of glass , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  M. Strege,et al.  Separation of DNA restriction fragments by capillary electrophoresis using coated fused silica capillaries. , 1991, Analytical chemistry.

[38]  Jaroslav Kováčik,et al.  Correlation between Young's modulus and porosity in porous materials , 1999 .

[39]  William D. Nix,et al.  Exploiting New Opportunities in Materials Research by Remembering and Applying Old Lessons , 2009 .

[40]  Yaron Silberberg,et al.  Nonlinear scanning laser microscopy by third harmonic generation , 1997 .

[41]  W. Knauss,et al.  A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy , 2002 .

[42]  Rajiv K. Kalia,et al.  Multiresolution atomistic simulations of dynamic fracture in nanostructured ceramics and glasses , 2003 .

[43]  K. Petersen Dynamic micromechanics on silicon: Techniques and devices , 1978, IEEE Transactions on Electron Devices.

[44]  J E Sears Jnr,et al.  A symmetrically opening optical slit , 1933 .

[45]  M. Levenson The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.

[46]  Joost J. Vlassak,et al.  A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films , 1992 .

[47]  Yves Bellouard,et al.  On the bending strength of fused silica flexures fabricated by ultrafast lasers [Invited] , 2011 .

[48]  Costas A. Charitidis,et al.  Finite element analysis, stress‐strain distribution and size effects rise during nanoindentation of welded aluminum alloy , 2013 .

[49]  Stuart T. Smith,et al.  Flexures: Elements of Elastic Mechanisms , 2000 .

[50]  Yves Bellouard,et al.  Direct volume variation measurements in fused silica specimens exposed to femtosecond laser , 2012 .

[51]  D. Tabor Hardness of Metals , 1937, Nature.

[52]  R. S. Krishnan,et al.  Dispersion of the stress-optic coefficient in glasses , 1972 .

[53]  John Canning,et al.  Anatomy of a femtosecond laser processed silica waveguide [Invited] , 2011 .

[54]  S. Matsuo,et al.  Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates , 2009 .

[55]  Jeffrey A. Squier,et al.  Third-harmonic generation imaging of laser-induced breakdown in glass , 1999 .

[56]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[57]  J. Squier,et al.  Determination of material properties by use of third-harmonic generation microscopy. , 2002 .

[58]  Y. Bellouard,et al.  Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. , 2004, Optics express.

[59]  J. F. H. CUSTERS Plastic Deformation of Glass during Scratching , 1949, Nature.

[60]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[61]  P. Kazansky,et al.  Form birefringence and negative index change created by femtosecond direct writing in transparent materials. , 2004, Optics letters.

[62]  P. Corkum,et al.  Optically produced arrays of planar nanostructures inside fused silica. , 2006, Physical review letters.

[63]  Arun S. Wagh,et al.  Open pore description of mechanical properties of ceramics , 1991 .

[64]  T. W. Clyne,et al.  A simple development of the shear lag theory appropriate for composites with a relatively small modulus mismatch , 1989 .

[65]  William D. Nix,et al.  Mechanical properties of thin films , 1989 .

[66]  M. A. Haque,et al.  A review of MEMS-based microscale and nanoscale tensile and bending testing , 2003 .

[67]  A. DeS,et al.  Statistical approach to brittle fracture , 2022 .

[68]  Rajiv K. Kalia,et al.  ATOMISTIC ASPECTS OF CRACK PROPAGATION IN BRITTLE MATERIALS: Multimillion Atom Molecular Dynamics Simulations , 2002 .

[69]  Yaron Silberberg,et al.  Depth-resolved structural imaging by third-harmonic generation microscopy. , 2004, Journal of structural biology.

[70]  Tsang,et al.  Optical third-harmonic generation at interfaces. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[71]  Yves Bellouard Microrobotics: Methods and Applications , 2009 .