Novel Nanoparticle‐Reinforced Metal Matrix Composites with Enhanced Mechanical Properties

This paper summarizes and reviews the state-of-the-art processing methods, structures and mechanical properties of the metal matrix composites reinforced with ceramic nanoparticles. The metal matrices of nanocomposites involved include aluminum and magnesium. The processing approaches for nanocomposites can be classified into ex-situ and in-situ synthesis routes. The ex-situ ceramic nanoparticles are prone to cluster during composite processing and the properties of materials are lower than the theoretical values. Despite the fact of clustering, ex-situ nanocomposites reinforced with very low loading levels of nanoparticles exhibit higher yield strength and creep resistance than their microcomposite counterparts filled with much higher particulate content. Better dispersion of ceramic nanoparticles in metal matrix can be achieved by using appropriate processing techniques. Consequently, improvements in both the mechanical strength and ductility can be obtained readily in aluminum or magnesium by adding ceramic nanoparticles. Similar beneficial enhancements in mechanical properties are observed for the nanocomposites reinforced with in-situ nanoparticles.

[1]  H. Ferkel,et al.  Magnesium strengthened by SiC nanoparticles , 2001 .

[2]  F. Boey,et al.  Mechanical alloying for the effective dispersion of sub-micron SiCp reinforcements in Al–Li alloy composite , 1998 .

[3]  V. Stolyarov,et al.  Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion , 2000 .

[4]  C. Suryanarayana,et al.  Mechanical alloying and milling , 2004 .

[5]  B. Mordike,et al.  Magnesium: Properties — applications — potential , 2001 .

[6]  M. Gupta,et al.  Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique , 2006 .

[7]  J. C. Huang,et al.  Mg based nano-composites fabricated by friction stir processing , 2006 .

[8]  J. Lewandowski,et al.  Mechanical behaviour of laminated metal composites , 1996 .

[9]  M. Gupta,et al.  Development of Al-Mg Based Composites Containing Nanometric Alumina Using the Technique of Disintegrated Melt Deposition , 2005 .

[10]  Zhang Xiuqing,et al.  The mechanical properties of magnesium matrix composites reinforced with (TiB2 + TiC) ceramic particulates , 2005 .

[11]  G. Garcés,et al.  Effect of the extrusion texture on the mechanical behaviour of Mg–SiCp composites , 2005 .

[12]  R. A. Marra,et al.  Sinterable Ceramic Powders from Laser-Driven Reactions: I, Process Description and Modeling , 1982 .

[13]  S. Tjong,et al.  High temperature creep behavior of nanometric Si3N4 particulate reinforced aluminium composite , 1997 .

[14]  W. Riehemann,et al.  Dispersion hardening of metals by nanoscaled ceramic powders , 1997 .

[15]  P. McCormick,et al.  Compressive Mechanical Properties of Mg-Ti-C Nanocomposite Synthesised by Mechanical Milling , 2001 .

[16]  Sie Chin Tjong,et al.  Microstructural and mechanical characteristics of in situ metal matrix composites , 2000 .

[17]  M. Gupta,et al.  Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement , 2005 .

[18]  M. Gupta,et al.  Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing , 2007 .

[19]  S. Martelli,et al.  Synthesis of TiC and SiC/TiC nanocrystalline powders by gas-phase laser-induced reaction , 1997 .

[20]  Peter C. Collins,et al.  Nanoscale TiB precipitates in laser deposited Ti-matrix composites , 2005 .

[21]  Li Lu,et al.  Magnesium nanocomposite via mechanochemical milling , 2004 .

[22]  S. Tjong,et al.  Nanometric Si3N4 particulate-reinforced aluminum composite , 1996 .

[23]  W. Wong,et al.  Development of Mg/Cu nanocomposites using microwave assisted rapid sintering , 2007 .

[24]  M. Gupta,et al.  Effect of type of primary processing on the microstructure, CTE and mechanical properties of magnesium/alumina nanocomposites , 2006 .

[25]  M. Gupta,et al.  Development of high performance magnesium nanocomposites using solidification processing route , 2004 .

[26]  K. Chawla,et al.  Metal Matrix Composites , 2006 .

[27]  Deliang Zhang,et al.  Processing of Cu–Al2O3 metal matrix nanocomposite materials by using high energy ball milling , 2000 .

[28]  U. F. Kocks On the spacing of dispersed obstacles , 1966 .

[29]  J. Schoenung,et al.  Microstructure and tensile properties of bulk nanostructured Al-5083/SiCp composites prepared by cryomilling , 2005 .

[30]  Fabrication, Microstructure, and Mechanical Properties of Tip/Al Composite , 2003 .

[31]  J. Allison,et al.  Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiCp composite , 1998 .

[32]  M. Gupta,et al.  Effect of length scale of alumina particles of different sizes on the damping characteristics of an Al–Mg alloy , 2006 .

[33]  K. Prewo,et al.  Comment on “a comparison of PM vs melted SiC/Al composites” , 1989 .

[34]  R. Valiev Structure and mechanical properties of ultrafine-grained metals , 1997 .

[35]  E. Lavernia,et al.  Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling , 2003 .

[36]  Z. Zhang,et al.  Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength , 2006 .

[37]  D. Jia Influence of SiC particulate size on the microstructural evolution and mechanical properties of Al–6Ti–6Nb matrix composites , 2000 .

[38]  S. Enzo,et al.  Laser synthesis and crystallographic characterization of ultrafine SiC powders , 1990 .

[39]  S. Tjong,et al.  Nanocrystalline materials and coatings , 2004 .

[40]  N. Ho,et al.  Al-Al3Ti nanocomposites produced in situ by friction stir processing , 2006 .

[41]  J. Schoenung,et al.  Formation of coarse-grained inter-particle regions during hot isostatic pressing of nanocrystalline powder , 2005 .

[42]  M. Gupta,et al.  Energy Dissipation Studies of Mg-based Nanocomposites Using an Innovative Circle-fit Approach , 2004 .

[43]  M. Y. Yau,et al.  Formation of Al2Cu and AlCu intermetallics in Al(Cu) alloy matrix composites by reaction sintering , 2004 .

[44]  R. Varin Intermetallic-reinforced light-metal matrix in-situ composites , 2002 .

[45]  M. Gupta,et al.  Simultaneously Improving Strength and Ductility of Magnesium using Nano‐size SiC Particulates and Microwaves , 2006 .

[46]  R. Arsenault,et al.  Dislocation generation due to differences between the coefficients of thermal expansion , 1986 .

[47]  S. Chan,et al.  Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites , 2004 .

[48]  D. Miracle Metal matrix composites – From science to technological significance , 2005 .

[49]  E. Lavernia,et al.  Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy , 2001 .

[50]  Xiaochun Li,et al.  Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method , 2004 .

[51]  Xiaochun Li,et al.  Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy , 2004 .