Languages Whose n-Element Subsets Are Codes

Abstract The combinatorial structure of n-codes is investigated. An n-code is a language, each of whose subsets of cardinality at most n is a code.

[1]  Helmut Jürgensen,et al.  Relations on free monoids, their independent sets, and codes , 1991, Int. J. Comput. Math..

[2]  Masami Ito,et al.  Anti-commutative languages and n-codes , 1989, Discret. Appl. Math..

[3]  Juhani Karhumäki A Property of Three-Element Codes , 1984, STACS.

[4]  Antonio Restivo,et al.  Some Results On Finite Maximal Codes , 1985, RAIRO Theor. Informatics Appl..

[5]  G. Thierrin,et al.  Codes and binary relations , 1977 .

[6]  H. Shyr Free monoids and languages , 1979 .

[7]  Juhani Karhumäki On Three-Element Codes , 1984, ICALP.

[8]  Helmut Jürgensen,et al.  n-Prefix–suffix languages ∗ , 1989 .

[9]  Masami Ito,et al.  Outfix and Infix Codes and Related Classes of Languages , 1991, J. Comput. Syst. Sci..

[10]  Juhani Karhumäki,et al.  On Three-Element Codes , 1984, Theor. Comput. Sci..

[11]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[12]  J. Berstel,et al.  Theory of codes , 1985 .

[13]  Juhani Karhumäki,et al.  A Property of Three-Element Codes , 1984, Theor. Comput. Sci..