Bat echolocation in continental China: a systematic review and first acoustic identification key for the country

[1]  Aldo A. Guevara-Carrizales,et al.  The Sonozotz project: Assembling an echolocation call library for bats in a megadiverse country , 2020, Ecology and evolution.

[2]  M. Mas,et al.  Ecological indices in long-term acoustic bat surveys for assessing and monitoring bats' responses to climatic and land-cover changes , 2020 .

[3]  Jian Sun,et al.  Research trends on bats in China: A twenty-first century review , 2019, Mammalian Biology.

[4]  Romain Julliard,et al.  Accounting for automated identification errors in acoustic surveys , 2019, Methods in Ecology and Evolution.

[5]  C. Kerbiriou,et al.  Bat Pass Duration Measurement: An Indirect Measure of Distance of Detection , 2019, Diversity.

[6]  Adrià López-Baucells,et al.  Stronger together: Combining automated classifiers with manual post-validation optimizes the workload vs reliability trade-off of species identification in bat acoustic surveys , 2019, Ecol. Informatics.

[7]  Chunmian Zhang,et al.  Geographical variation in the echolocation calls of bent-winged bats, Miniopterus fuliginosus. , 2018, Zoology.

[8]  Kate E. Jones,et al.  Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring , 2018, Methods in Ecology and Evolution.

[9]  C. F. Meyer,et al.  Geographical variation in the high-duty cycle echolocation of the cryptic common mustached bat Pteronotus cf. rubiginosus (Mormoopidae) , 2018 .

[10]  E. Bernard,et al.  Who’s calling? Acoustic identification of Brazilian bats , 2018, Mammal Research.

[11]  C. F. Meyer,et al.  The importance of lakes for bat conservation in Amazonian rainforests: an assessment using autonomous recorders , 2018 .

[12]  Alex Rogers,et al.  AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment , 2018 .

[13]  April E. Reside,et al.  Acoustic Call Library and Detection Distances for Bats of Swaziland , 2017, Acta Chiropterologica.

[14]  Lu Zhang,et al.  Strengthening protected areas for biodiversity and ecosystem services in China , 2017, Proceedings of the National Academy of Sciences.

[15]  John Harte,et al.  Consumption‐Based Conservation Targeting: Linking Biodiversity Loss to Upstream Demand through a Global Wildlife Footprint , 2016, Conservation letters.

[16]  Diana D. Moreno-Santillán,et al.  Acoustic Ecology of European Bats: Species Identification, Study of Their Habitats and Foraging Behavior , 2016, Journal of Mammalogy.

[17]  A. López‐Baucells,et al.  Field guide to Amazonian Bats , 2016 .

[18]  Christian C. Voigt,et al.  The use of automated identification of bat echolocation calls in acoustic monitoring: A cautionary note for a sound analysis , 2016 .

[19]  D. Willette,et al.  Geographical Variation of Rhinolophus affinis (Chiroptera: Rhinolophidae) in the Sundaic Subregion of Southeast Asia, including the Malay Peninsula, Borneo and Sumatra , 2016, Acta Chiropterologica.

[20]  B. Li,et al.  Sexual dimorphism in echolocation pulse parameters of the CF-FM bat, Hipposideros pratti , 2015, Zoological Studies.

[21]  Tinglei Jiang,et al.  Patterns and causes of geographic variation in bat echolocation pulses. , 2015, Integrative zoology.

[22]  J. Kanwal,et al.  Geographical variation in echolocation vocalizations of the Himalayan leaf‐nosed bat: contribution of morphological variation and cultural drift , 2015 .

[23]  Zhifeng Liu,et al.  Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective , 2014, Global change biology.

[24]  J. Altringham,et al.  Acoustic Identification of Bats in the Southern Western Ghats, India , 2014 .

[25]  Li Zhang,et al.  Wildlife consumption and conservation awareness in China: a long way to go , 2014, Biodiversity and Conservation.

[26]  Liu Yan-l Plasticity of echolocation call of Himalayan leaf-nosed bat in different situations and habitats complexities , 2014 .

[27]  Kate E. Jones,et al.  Challenges of Using Bioacoustics to Globally Monitor Bats , 2013 .

[28]  E. Britzke,et al.  Current state of understanding of ultrasonic detectors for the study of bat ecology , 2013, Acta Theriologica.

[29]  Gong Peng,et al.  Bird watching in China reveals bird distribution changes , 2013 .

[30]  R. Hashim,et al.  The Malaysian bat conservation research unit: From a national model to an international network , 2012 .

[31]  Jagmeet S. Kanwal,et al.  Postnatal development of morphological and vocal features in Asian particolored bat, Vespertilio sinensis , 2012 .

[32]  Jarrett E. K. Byrnes,et al.  A global synthesis reveals biodiversity loss as a major driver of ecosystem change , 2012, Nature.

[33]  Sara Bumrungsri,et al.  Using Echolocation Calls to Identify Thai Bat Species: Vespertilionidae, Emballonuridae, Nycteridae and Megadermatidae , 2011 .

[34]  B. Siemers,et al.  The communicative potential of bat echolocation pulses , 2011, Journal of Comparative Physiology A.

[35]  W. Metzner,et al.  Variation in the resting frequency of Rhinolophus pusillus in Mainland China: effect of climate and implications for conservation. , 2010, The Journal of the Acoustical Society of America.

[36]  Jiang Feng,et al.  Geographical and individual variation in echolocation calls of the intermediate leaf‐nosed bat, Hipposideros larvatus , 2010 .

[37]  Bradley Law,et al.  Reliable Automation of Bat Call Identification for Eastern New South Wales, Australia, Using Classification Trees and AnaScheme Software , 2010 .

[38]  J. Lamarque,et al.  Global Biodiversity: Indicators of Recent Declines , 2010, Science.

[39]  E. Kalko,et al.  Effects of tropical forest fragmentation on aerial insectivorous bats in a land-bridge island system. , 2010 .

[40]  Y. Liu,et al.  Postnatal development of morphological features and vocalization in the pomona leaf-nosed bat Hipposideros pomona , 2010, Acta Theriologica.

[41]  Andrew T. Smith,et al.  中国兽类野外手册 = A guide to the mammals of China , 2010 .

[42]  Iain,et al.  The role of ultrasonic bat detectors in improving inventory and monitoring surveys in Vietnamese karst bat assemblages , 2009 .

[43]  Shan-yi Zhou,et al.  Postnatal Development of Morphological Features and Vocalization of Rhinolophus pusillus : Postnatal Development of Morphological Features and Vocalization of Rhinolophus pusillus , 2009 .

[44]  D. Harrison,et al.  A taxonomic review of Rhinolophus stheno and R. malayanus (Chiroptera: Rhinolophidae) from continental Southeast Asia: an evaluation of echolocation call frequency in discriminating between cryptic species , 2008 .

[45]  Wang Jing,et al.  Echolocation calls of Rhinolophus ferrumequinum in relation to habitat type and environmental factors , 2008 .

[46]  S. Parsons,et al.  Human vs. machine : identification of bat species from their echolocation calls by humans and by artificial neural networks , 2008 .

[47]  Li Zhang,et al.  Wildlife trade, consumption and conservation awareness in southwest China , 2008, Biodiversity and Conservation.

[48]  Eleni Papadatou,et al.  Identification of bat species in Greece from their echolocation calls , 2008 .

[49]  T. Kingston Research priorities for bat conservation in Southeast Asia: a consensus approach , 2008, Biodiversity and Conservation.

[50]  Carles Flaquer,et al.  COMPARISON OF SAMPLING METHODS FOR INVENTORY OF BAT COMMUNITIES , 2007 .

[51]  M. Holderied,et al.  Bat echolocation calls: adaptation and convergent evolution , 2007, Proceedings of the Royal Society B: Biological Sciences.

[52]  W. Metzner,et al.  Dietary composition and echolocation call design of three sympatric insectivorous bat species from China , 2007, Ecological Research.

[53]  D. Harrison,et al.  A review of bat research in Thailand with eight new species records for the country , 2006 .

[54]  Gareth Jones,et al.  The evolution of echolocation in bats. , 2006, Trends in ecology & evolution.

[55]  Hiroshi Riquimaroux,et al.  Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight. , 2005, The Journal of the Acoustical Society of America.

[56]  D. Preatoni,et al.  IDENTIFYING BATS FROM TIME-EXPANDED RECORDINGS OF SEARCH CALLS: COMPARING CLASSIFICATION METHODS , 2005 .

[57]  M. Fenton,et al.  Hunting in unfamiliar space: echolocation in the Indian false vampire bat, Megaderma lyra, when gleaning prey , 2005, Behavioral Ecology and Sociobiology.

[58]  David A Hill,et al.  Acoustic Identification of Eight Species of Bat (Mammalia: Chiroptera) Inhabiting Forests of Southern Hokkaido, Japan: Potential for Conservation Monitoring , 2004, Zoological science.

[59]  D. J. Milne,et al.  A comparison of three survey methods for collecting bat echolocation calls and species-accumulation rates from nightly Anabat recordings , 2004 .

[60]  Dean A. Waters,et al.  Echolocation call design and limits on prey size: a case study using the aerial-hawking bat Nyctalus leisleri , 1995, Behavioral Ecology and Sociobiology.

[61]  M. Obrist Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design , 1995, Behavioral Ecology and Sociobiology.

[62]  Stuart Parsons,et al.  Bat Echolocation Research. Tools, Techniques and Analysis. , 2004 .

[63]  J. Kusch,et al.  Structure and variability of bat social calls: implications for specificity and individual recognition , 2003 .

[64]  M. Fenton Eavesdropping on the echolocation and social calls of bats , 2003 .

[65]  Zhou Jiang,et al.  Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae , 2003 .

[66]  Yuanfang Liu,et al.  Sexual differences in morphology and echolocation calls in five Chinese bat species , 2003 .

[67]  E. Britzke,et al.  VARIATION IN SEARCH-PHASE CALLS OF BATS , 2001 .

[68]  T. Kunz,et al.  Acoustic divergence in two cryptic Hipposideros species: a role for social selection? , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[69]  P. Racey,et al.  Microchiropteran bats : global status survey and conservation action plan , 2001 .

[70]  S. Parsons,et al.  Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. , 2000, The Journal of experimental biology.

[71]  P. Bates,et al.  A review of bat research in Myanmar (Burma) and results of a recent survey , 2000 .

[72]  William L. Gannon,et al.  Geographic variation in the echolocation calls of the hoary bat ( Lasiurus cinereus) , 2000 .

[73]  Bruce W. Miller,et al.  Use of Vocal Signatures for the Inventory of Free‐flying Neotropical Bats 1 , 1999 .

[74]  M. J. O'farrell,et al.  A Comparison of Acoustic Versus Capture Techniques for the Inventory of Bats , 1999 .

[75]  Bruce W. Miller,et al.  Qualitative Identification of Free-Flying Bats Using the Anabat Detector , 1999 .

[76]  R. Barclay,et al.  Bats are not birds- a cautionary note on using echolocation calls to identify bats: a comment , 1999 .

[77]  Ingemar Ahlén,et al.  Use of ultrasound detectors for bat studies in Europe: experiences from field identification, surveys, and monitoring , 1999 .

[78]  S. Harris,et al.  Identification of British bat species by multivariate analysis of echolocation call parameters , 1997 .

[79]  S. V. Van Parijs,et al.  Bimodal echolocation in pipistrelle bats: are cryptic species present? , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[80]  M. Fenton Design of bat echolocation calls: implications for foraging ecology and communication , 1986 .

[81]  M. Fenton,et al.  Recognition of Species of Insectivorous Bats by Their Echolocation Calls , 1981 .