Functional materials for the IT-SOFC
暂无分享,去创建一个
[1] M. M. Nasrallah,et al. Structure and electrical properties of La1 − xSrxCo1 − yFeyO3. Part 2. The system La1 − xSrxCo0.2Fe0.8O3 , 1995 .
[2] V. Thangadurai,et al. Studies on electrical properties of La0.8Sr0.2Ga0.8Mg0.2O2.80 (LSGM) and LSGM–SrSn1−xFexO3 (x = 0.8; 0.9) composites and their chemical reactivity , 2005 .
[3] J. Gong,et al. Temperature-dependence of the lattice conductivity of mixed calcia/yttria-stabilized zirconia , 2002 .
[4] Hermann Schichl,et al. Degradation of the electrical conductivity in stabilised zirconia system: Part II: Scandia-stabilised zirconia , 2005 .
[5] J. Goodenough,et al. Sr‐ and Ni‐Doped LaCoO3 and LaFeO3 Perovskites New Cathode Materials for Solid‐Oxide Fuel Cells , 1998 .
[6] Y. Sakurai,et al. Properties of La1−ySryNi1−xFexO3 as a cathode material for a low-temperature operating SOFC , 2002 .
[7] Harlan U. Anderson,et al. Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3 , 1995 .
[8] M. B. Phillipps,et al. Gd1−xAxCo1−yMnyO3 (A=Sr, Ca) as a cathode for the SOFC , 1999 .
[9] W. Jin,et al. Synthesis and oxygen permeation properties of La0.2Sr0.8Co0.2Fe0.8O3−δ membranes , 1999 .
[10] Nigel M. Sammes,et al. Novel applications for micro-SOFCs , 2000 .
[11] N. Sakai,et al. Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere , 1999 .
[12] V. Kuncser,et al. Local interactions and electronic phenomena in substituted LaFeO3 perovskites , 2005 .
[13] B. Steele,et al. The structure of and reaction of A-site deficient La0.6Sr0.4 − xCo0.2Fe0.8O3 − δ perovskites , 1996 .
[14] M. Hrovat,et al. Characterisation of LaNi1-xCoxO3 as a possible SOFC cathode material , 1996 .
[15] A. Petric,et al. Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium , 1996 .
[16] M. Islam,et al. Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors. , 2004, Dalton transactions.
[17] J. Molenda,et al. Transport Properties of Ferrous Oxide Fe1−yO at High Temperature , 1987 .
[18] Raymond J. Gorte,et al. Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.
[19] Svein Stølen,et al. Oxygen-deficient perovskites: linking structure, energetics and ion transport. , 2006, Physical chemistry chemical physics : PCCP.
[20] H. Yahiro,et al. Electrical properties and reducibilities of ceria−rare earth oxide systems and their application to solid oxide fuel cell , 1989 .
[21] S. Stølen,et al. Order in the disordered state: local structural entities in the fast ion conductor Ba2In2O5 , 2005 .
[22] H. Anderson,et al. Nonstoichiometry and electrical transport in Sc-doped zirconia , 2002 .
[23] T. He,et al. Study on the properties of Al2O3-doped (ZrO2)0.92(Y2O3)0.08 electrolyte , 1999 .
[24] Khiam Aik Khor,et al. High-performance low-temperature solid oxide fuel cell with novel BSCF cathode , 2006 .
[25] William J. Weber,et al. Electrochemical Properties of Mixed Conducting Perovskites La1 − x M x Co1 − y Fe y O 3 − δ (M = Sr, Ba, Ca) , 1996 .
[26] J. Molenda. Transport properties of Bi2Sr2CaCu2O8−y at high temperatures , 2000 .
[27] M. Sano,et al. Improvement of a reduction-resistant Ce 0.8Sm 0.2O 1.9 electrolyte by optimizing a thin BaCe 1−xSm xO 3− α layer for intermediate-temperature SOFCs , 2005 .
[28] Xiao-Dong Zhou,et al. Application of vacuum deposition methods to solid oxide fuel cells , 2006 .
[29] A. Mcevoy,et al. Lanthanide co-doping of solid electrolytes: AC conductivity behaviour , 1999 .
[30] G. Meng,et al. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells , 2003 .
[31] R. Song,et al. Characterization of scandia stabilized zirconia prepared by glycine nitrate process and its performance as the electrolyte for IT-SOFC , 2005 .
[32] F. Abraham,et al. Structural and electrochemical characterisation of new oxide ion conductors for oxygen generating systems and fuel cells , 2005 .
[33] Hideaki Inaba,et al. Ceria-based solid electrolytes , 1996 .
[34] Tatsumi Ishihara,et al. High-Power SOFC Using La0.9Sr0.1Ga0.8Mg0.2O3 − δ ∕ Ce0.8Sm0.2O2 − δ Composite Film , 2005 .
[35] Zongping Shao,et al. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density , 2005, Nature.
[36] Yoji Sakurai,et al. An investigation of LaNi1−xFexO3 as a cathode material for solid oxide fuel cells , 1999 .
[37] H. Yamamura,et al. Application of a crystallographic index for improvement of the electrolytic properties of the CeO2-Sm2O3 system , 1999 .
[38] B. Lundqvist,et al. Quantum origin of the oxygen storage capability of ceria. , 2002, Physical review letters.
[39] S. Skinner. Recent advances in perovskite-type materials for SOFC cathodes , 2001 .
[40] B. Steele,et al. The effect of thermal treatment on the resistance of LSCF electrodes on gadolinia doped ceria electrolytes , 1996 .
[41] J. Molenda,et al. The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel , 2004 .
[42] N. Imanishi,et al. Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln=La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells , 1999 .
[43] J. Molenda,et al. Transport properties and reactivity of tungsten trioxide , 1999 .
[44] Song Chen,et al. Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells , 2004 .
[45] S. Rajendran,et al. An investigation of conductivity, microstructure and stability of electrolyte compositions in the system 9 mol% (Sc2O3-Y2O3)-ZrO2(Al2O3) , 1998 .
[46] E. Ivers-Tiffée,et al. Materials and technologies for SOFC-components , 2001 .
[47] J. Molenda. The Mechanism of Charge Carrier Transport in Non-Stoichiometric YBa2Cu3O7-δ at High Temperatures , 1992 .
[48] Ch. Ftikos,et al. Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3-δ-based perovskite oxides , 1999 .
[49] H. Yahiro,et al. Electrical properties and microstructure in the system ceria-alkaline earth oxide , 1988 .
[50] João A. Labrincha,et al. Cathode materials for intermediate temperature SOFCs , 2000 .
[51] Y. Yamamura,et al. Thermal and electrical properties of Ba2In2O5 substituted for In-site by rare earth elements , 2006 .
[52] V. Kharton,et al. Oxygen Ionic and Electronic Transport in Apatite-Type Solid Electrolytes , 2004 .
[53] M. Mori,et al. Stability of La1−xAxMnO3−z (A=Ca, Sr) as cathode materials for solid oxide fuel cells , 1994 .
[54] William J. Weber,et al. Electrochemical properties of mixed conducting perovskites La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y}Fe{sub y}O{sub 3{minus}{delta}} (M = Sr, Ba, Ca) , 1996 .
[55] D. Palubiak,et al. LFN and LSCFN perovskites - : structure and transport properties , 2006 .
[56] O. Yamamoto. Solid oxide fuel cells: fundamental aspects and prospects , 2000 .
[57] T. Etsell,et al. Electrical properties of solid oxide electrolytes , 1970 .
[58] Andreas Tschöpe,et al. Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model , 2001 .
[59] K. Foger,et al. Solid oxide electrolyte fuel cell review , 1996 .
[60] Takanori Inoue,et al. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells , 1992 .
[61] R. Birringer,et al. Grain size-dependent electrical conductivity of polycrystalline cerium oxide: I. Experiments , 2001 .
[62] R. Maric,et al. Interface reactions in the NiO–SDC–LSGM system , 2000 .
[63] Zongping Shao,et al. Anode-supported thin-film fuel cells operated in a single chamber configuration 2T-I-12 , 2004 .
[64] N. Minh. Ceramic Fuel Cells , 1993 .
[65] Y. Takeda,et al. Electrical conductivity of the ZrO2–Ln2O3 (Ln=lanthanides) system , 1999 .