Functional materials for the IT-SOFC

The paper summarizes and discusses the basic properties of solid oxide fuel cell (SOFC) components (electrode materials and electrolyte) from the point of view of their essential functional parameters like chemical stability, transport, catalytic and thermomechanical properties under operational conditions in a SOFC. An interrelation between the defect structure of these materials related to oxygen nonstoichiometry and their electrical properties and catalytic activity was shown.

[1]  M. M. Nasrallah,et al.  Structure and electrical properties of La1 − xSrxCo1 − yFeyO3. Part 2. The system La1 − xSrxCo0.2Fe0.8O3 , 1995 .

[2]  V. Thangadurai,et al.  Studies on electrical properties of La0.8Sr0.2Ga0.8Mg0.2O2.80 (LSGM) and LSGM–SrSn1−xFexO3 (x = 0.8; 0.9) composites and their chemical reactivity , 2005 .

[3]  J. Gong,et al.  Temperature-dependence of the lattice conductivity of mixed calcia/yttria-stabilized zirconia , 2002 .

[4]  Hermann Schichl,et al.  Degradation of the electrical conductivity in stabilised zirconia system: Part II: Scandia-stabilised zirconia , 2005 .

[5]  J. Goodenough,et al.  Sr‐ and Ni‐Doped LaCoO3 and LaFeO3 Perovskites New Cathode Materials for Solid‐Oxide Fuel Cells , 1998 .

[6]  Y. Sakurai,et al.  Properties of La1−ySryNi1−xFexO3 as a cathode material for a low-temperature operating SOFC , 2002 .

[7]  Harlan U. Anderson,et al.  Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3 , 1995 .

[8]  M. B. Phillipps,et al.  Gd1−xAxCo1−yMnyO3 (A=Sr, Ca) as a cathode for the SOFC , 1999 .

[9]  W. Jin,et al.  Synthesis and oxygen permeation properties of La0.2Sr0.8Co0.2Fe0.8O3−δ membranes , 1999 .

[10]  Nigel M. Sammes,et al.  Novel applications for micro-SOFCs , 2000 .

[11]  N. Sakai,et al.  Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere , 1999 .

[12]  V. Kuncser,et al.  Local interactions and electronic phenomena in substituted LaFeO3 perovskites , 2005 .

[13]  B. Steele,et al.  The structure of and reaction of A-site deficient La0.6Sr0.4 − xCo0.2Fe0.8O3 − δ perovskites , 1996 .

[14]  M. Hrovat,et al.  Characterisation of LaNi1-xCoxO3 as a possible SOFC cathode material , 1996 .

[15]  A. Petric,et al.  Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium , 1996 .

[16]  M. Islam,et al.  Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors. , 2004, Dalton transactions.

[17]  J. Molenda,et al.  Transport Properties of Ferrous Oxide Fe1−yO at High Temperature , 1987 .

[18]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[19]  Svein Stølen,et al.  Oxygen-deficient perovskites: linking structure, energetics and ion transport. , 2006, Physical chemistry chemical physics : PCCP.

[20]  H. Yahiro,et al.  Electrical properties and reducibilities of ceria−rare earth oxide systems and their application to solid oxide fuel cell , 1989 .

[21]  S. Stølen,et al.  Order in the disordered state: local structural entities in the fast ion conductor Ba2In2O5 , 2005 .

[22]  H. Anderson,et al.  Nonstoichiometry and electrical transport in Sc-doped zirconia , 2002 .

[23]  T. He,et al.  Study on the properties of Al2O3-doped (ZrO2)0.92(Y2O3)0.08 electrolyte , 1999 .

[24]  Khiam Aik Khor,et al.  High-performance low-temperature solid oxide fuel cell with novel BSCF cathode , 2006 .

[25]  William J. Weber,et al.  Electrochemical Properties of Mixed Conducting Perovskites La1 − x M x Co1 − y Fe y O 3 − δ (M = Sr, Ba, Ca) , 1996 .

[26]  J. Molenda Transport properties of Bi2Sr2CaCu2O8−y at high temperatures , 2000 .

[27]  M. Sano,et al.  Improvement of a reduction-resistant Ce 0.8Sm 0.2O 1.9 electrolyte by optimizing a thin BaCe 1−xSm xO 3− α layer for intermediate-temperature SOFCs , 2005 .

[28]  Xiao-Dong Zhou,et al.  Application of vacuum deposition methods to solid oxide fuel cells , 2006 .

[29]  A. Mcevoy,et al.  Lanthanide co-doping of solid electrolytes: AC conductivity behaviour , 1999 .

[30]  G. Meng,et al.  Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells , 2003 .

[31]  R. Song,et al.  Characterization of scandia stabilized zirconia prepared by glycine nitrate process and its performance as the electrolyte for IT-SOFC , 2005 .

[32]  F. Abraham,et al.  Structural and electrochemical characterisation of new oxide ion conductors for oxygen generating systems and fuel cells , 2005 .

[33]  Hideaki Inaba,et al.  Ceria-based solid electrolytes , 1996 .

[34]  Tatsumi Ishihara,et al.  High-Power SOFC Using La0.9Sr0.1Ga0.8Mg0.2O3 − δ ∕ Ce0.8Sm0.2O2 − δ Composite Film , 2005 .

[35]  Zongping Shao,et al.  A thermally self-sustained micro solid-oxide fuel-cell stack with high power density , 2005, Nature.

[36]  Yoji Sakurai,et al.  An investigation of LaNi1−xFexO3 as a cathode material for solid oxide fuel cells , 1999 .

[37]  H. Yamamura,et al.  Application of a crystallographic index for improvement of the electrolytic properties of the CeO2-Sm2O3 system , 1999 .

[38]  B. Lundqvist,et al.  Quantum origin of the oxygen storage capability of ceria. , 2002, Physical review letters.

[39]  S. Skinner Recent advances in perovskite-type materials for SOFC cathodes , 2001 .

[40]  B. Steele,et al.  The effect of thermal treatment on the resistance of LSCF electrodes on gadolinia doped ceria electrolytes , 1996 .

[41]  J. Molenda,et al.  The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel , 2004 .

[42]  N. Imanishi,et al.  Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln=La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells , 1999 .

[43]  J. Molenda,et al.  Transport properties and reactivity of tungsten trioxide , 1999 .

[44]  Song Chen,et al.  Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells , 2004 .

[45]  S. Rajendran,et al.  An investigation of conductivity, microstructure and stability of electrolyte compositions in the system 9 mol% (Sc2O3-Y2O3)-ZrO2(Al2O3) , 1998 .

[46]  E. Ivers-Tiffée,et al.  Materials and technologies for SOFC-components , 2001 .

[47]  J. Molenda The Mechanism of Charge Carrier Transport in Non-Stoichiometric YBa2Cu3O7-δ at High Temperatures , 1992 .

[48]  Ch. Ftikos,et al.  Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3-δ-based perovskite oxides , 1999 .

[49]  H. Yahiro,et al.  Electrical properties and microstructure in the system ceria-alkaline earth oxide , 1988 .

[50]  João A. Labrincha,et al.  Cathode materials for intermediate temperature SOFCs , 2000 .

[51]  Y. Yamamura,et al.  Thermal and electrical properties of Ba2In2O5 substituted for In-site by rare earth elements , 2006 .

[52]  V. Kharton,et al.  Oxygen Ionic and Electronic Transport in Apatite-Type Solid Electrolytes , 2004 .

[53]  M. Mori,et al.  Stability of La1−xAxMnO3−z (A=Ca, Sr) as cathode materials for solid oxide fuel cells , 1994 .

[54]  William J. Weber,et al.  Electrochemical properties of mixed conducting perovskites La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y}Fe{sub y}O{sub 3{minus}{delta}} (M = Sr, Ba, Ca) , 1996 .

[55]  D. Palubiak,et al.  LFN and LSCFN perovskites - : structure and transport properties , 2006 .

[56]  O. Yamamoto Solid oxide fuel cells: fundamental aspects and prospects , 2000 .

[57]  T. Etsell,et al.  Electrical properties of solid oxide electrolytes , 1970 .

[58]  Andreas Tschöpe,et al.  Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model , 2001 .

[59]  K. Foger,et al.  Solid oxide electrolyte fuel cell review , 1996 .

[60]  Takanori Inoue,et al.  Electrical properties of ceria-based oxides and their application to solid oxide fuel cells , 1992 .

[61]  R. Birringer,et al.  Grain size-dependent electrical conductivity of polycrystalline cerium oxide: I. Experiments , 2001 .

[62]  R. Maric,et al.  Interface reactions in the NiO–SDC–LSGM system , 2000 .

[63]  Zongping Shao,et al.  Anode-supported thin-film fuel cells operated in a single chamber configuration 2T-I-12 , 2004 .

[64]  N. Minh Ceramic Fuel Cells , 1993 .

[65]  Y. Takeda,et al.  Electrical conductivity of the ZrO2–Ln2O3 (Ln=lanthanides) system , 1999 .