Identification of elastic properties in the belief function framework

Abstract Handling the uncertainty of information sources is a key issue in parameter identification. In this work, we address this issue using the theory of belief functions. First, measurement information is described through likelihood-based belief functions, and prior information is represented by an arbitrary belief function. Second, both belief functions are combined by Dempster's rule using point-cloud representation of focal sets and Monte Carlo simulation. Lastly, to summarize the combined belief function, we propose to find the minimal-area region in the parameter space, whose belief and plausibility values exceed given thresholds. As compared to Bayesian inference, this approach is more flexible, as it allows us to specify weak prior information. Experimental results show that it is also more robust than Bayesian inference to unreliable prior information.

[1]  T. Simpson,et al.  Efficient Pareto Frontier Exploration using Surrogate Approximations , 2000 .

[2]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[3]  Nic Wilson,et al.  A Monte-Carlo Algorithm for Dempster-Shafer Belief , 1991, UAI.

[4]  Thierry Denoeux,et al.  Identification of Elastic Properties Based on Belief Function Inference , 2016, BELIEF.

[5]  Thierry Denœux Rejoinder on “Likelihood-based belief function: Justification and some extensions to low-quality data” , 2014 .

[6]  Glenn Shafer,et al.  Dempster's rule of combination , 2016, Int. J. Approx. Reason..

[7]  A. Vautrin,et al.  Bayesian Identification of Elastic Constants in Multi-Directional Laminate from Moiré Interferometry Displacement Fields , 2012, Experimental Mechanics.

[8]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[9]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[10]  Colas Schretter,et al.  Monte Carlo and Quasi-Monte Carlo Methods , 2016 .

[11]  H. P. Lee,et al.  PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY , 2002 .

[12]  Klaus-Jürgen Bathe,et al.  Finite Element Method , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[13]  Liqi Sui,et al.  Uncertainty management in parameter identification , 2017 .

[14]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[15]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[16]  H. Niederreiter,et al.  Quasi-Monte Carlo Methods , 2010 .

[17]  J. Hadamard Sur les problemes aux derive espartielles et leur signification physique , 1902 .

[18]  F. Ackermann,et al.  DIGITAL IMAGE CORRELATION: PERFORMANCE AND POTENTIAL APPLICATION IN PHOTOGRAMMETRY , 2006 .

[19]  M. Friswell,et al.  Finite–element model updating using experimental test data: parametrization and regularization , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Fulvio Tonon Using random set theory to propagate epistemic uncertainty through a mechanical system , 2004, Reliab. Eng. Syst. Saf..

[21]  Stéphane Roux,et al.  Digital Image Correlation , 2012 .

[22]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[23]  Didier Dubois,et al.  Uncertainty theories applied to the analysis of CO2 plume extension during geological storage , 2009 .

[24]  Rafael Gouriveau,et al.  Remaining Useful Life Estimation by Classification of Predictions Based on a Neuro-Fuzzy System and Theory of Belief Functions , 2014, IEEE Transactions on Reliability.

[25]  Leonidas J. Guibas,et al.  Estimating surface normals in noisy point cloud data , 2004, Int. J. Comput. Geom. Appl..

[26]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[27]  S. Roux,et al.  “Finite-Element” Displacement Fields Analysis from Digital Images: Application to Portevin–Le Châtelier Bands , 2006 .

[28]  Pierre Villon,et al.  Modified constitutive relation error: An identification framework dealing with the reliability of information , 2016 .

[29]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[30]  Jon C. Helton,et al.  Challenge Problems : Uncertainty in System Response Given Uncertain Parameters ( DRAFT : November 29 , 2001 ) , 2001 .

[31]  G. Klir IS THERE MORE TO UNCERTAINTY THAN SOME PROBABILITY THEORISTS MIGHT HAVE US BELIEVE , 1989 .

[32]  Eduardo Saliby,et al.  An empirical evaluation of sampling methods in risk analysis simulation: quasi-Monte Carlo, descriptive sampling, and latin hypercube sampling , 2002, Proceedings of the Winter Simulation Conference.

[33]  Rolf Mahnken,et al.  A unified approach for parameter identification of inelastic material models in the frame of the finite element method , 1996 .

[34]  Michel Grédiac,et al.  Principe des travaux virtuels et identification , 1989 .

[35]  Yenn Jie. Ho Digital image correlation. , 2013 .

[36]  W. Peters,et al.  Digital Imaging Techniques In Experimental Stress Analysis , 1982 .

[37]  Andrew Makeev,et al.  Characterization of stress–strain behavior of composites using digital image correlation and finite element analysis , 2016 .

[38]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[39]  Radko Mesiar,et al.  Fuzzy Interval Analysis , 2000 .

[40]  Ramana V. Grandhi,et al.  Using random set theory to calculate reliability bounds for a wing structure , 2006 .

[41]  Thierry Denux,et al.  Likelihood-based belief function: Justification and some extensions to low-quality data , 2014, Int. J. Approx. Reason..

[42]  Glenn Shafer,et al.  Allocations of Probability , 1979, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[43]  J. Chazot,et al.  Parametric identification of elastic modulus of polymeric material in laminated glasses , 2012 .

[44]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[45]  Thierry Denoeux Rejoinder on "Likelihood-based belief function: Justification and some extensions to low-quality data" , 2014, Int. J. Approx. Reason..

[46]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[47]  Eric Florentin,et al.  Identification of the parameters of an elastic material model using the constitutive equation gap method , 2010 .

[48]  S. Ferson,et al.  Different methods are needed to propagate ignorance and variability , 1996 .

[49]  Thierry Denoeux,et al.  Combining statistical and expert evidence using belief functions: Application to centennial sea level estimation taking into account climate change , 2014, Int. J. Approx. Reason..

[50]  Philippe Smets,et al.  Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem , 1993, Int. J. Approx. Reason..

[51]  Stéphane Roux,et al.  Digital image correlation and biaxial test on composite material for anisotropic damage law identification , 2009 .

[52]  R. Huiskes,et al.  A three-dimensional digital image correlation technique for strain measurements in microstructures. , 2004, Journal of biomechanics.

[53]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[54]  Hubert Maigre,et al.  Inverse Problems in Engineering Mechanics , 1994 .

[55]  L. Wasserman Belief functions and statistical inference , 1990 .

[56]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[57]  Stéphane Roux,et al.  A finite element formulation to identify damage fields: the equilibrium gap method , 2004 .

[58]  Jon C. Helton,et al.  Alternative representations of epistemic uncertainty , 2004, Reliab. Eng. Syst. Saf..

[59]  J. Kajberg,et al.  Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields , 2004 .

[60]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[61]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[62]  Hung T. Nguyen,et al.  On Random Sets and Belief Functions , 1978, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[63]  Christian Soize,et al.  Experimental multiscale measurements for the mechanical identification of a cortical bone by digital image correlation. , 2016, Journal of the mechanical behavior of biomedical materials.

[64]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[65]  Stéphane Roux,et al.  An extended and integrated digital image correlation technique applied to the analysis of fractured samples , 2009 .

[66]  Stéphane Avril,et al.  Experimental identification of a nonlinear model for composites using the grid technique coupled to the virtual fields method , 2006 .

[67]  Scott Ferson,et al.  Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .

[68]  Enrico Zio,et al.  A belief function theory based approach to combining different representation of uncertainty in prognostics , 2015, Inf. Sci..

[69]  Bertrand Wattrisse,et al.  Elastoplastic Behavior Identification for Heterogeneous Loadings and Materials , 2008 .

[70]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[71]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[72]  A. Tikhonov,et al.  Numerical Methods for the Solution of Ill-Posed Problems , 1995 .

[73]  Helmut Schweiger,et al.  Random Set Finite Element Method Application to Tunnelling , 2010 .

[74]  Pierre Villon,et al.  Identification of elastic properties from full-field measurements: a numerical study of the effect of filtering on the identification results , 2013 .

[75]  Philippe Smets,et al.  Belief functions on real numbers , 2005, Int. J. Approx. Reason..

[76]  Pierre Villon,et al.  Robust identification of elastic properties using the Modified Constitutive Relation Error , 2015 .