Inversion of circulant matrices over Zm

In this paper we consider the problem of inverting an n × n circulant matrix with entries over Zm. We show that the algorithm for inverting circulants, based on the reduction to diagonal form by means of FFT, has some drawbacks when working over Zm. We present three different algorithms which do not use this approach. Our algorithms require different degrees of knowledge of m and n, and their costs range - roughly - from n log n log log n to n log2 n log log n log m operations over Zm. We also present an algorithm for the inversion of finitely generated bi-infinite Toeplitz matrices. The problems considered in this paper have applications to the theory of linear Cellular Automata.

[1]  A. Odlyzko,et al.  Algebraic properties of cellular automata , 1984 .

[2]  Satoshi Takahashi,et al.  Self-Similarity of Linear Cellular Automata , 1992, J. Comput. Syst. Sci..

[3]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[4]  Giovanni Manzini,et al.  A Complete and Efficiently Computable Topological Classification of D-dimensional Linear Cellular Automata over Zm , 1999, Theor. Comput. Sci..

[5]  Victor Y. Pan,et al.  Fundamental Computations with Polynomials , 1994 .

[6]  Nobuyasu Osato,et al.  Linear Cellular Automata over Z_m , 1983, J. Comput. Syst. Sci..

[7]  A. Householder The numerical treatment of a single nonlinear equation , 1970 .

[8]  Abraham Lempel,et al.  On the Complexity of Multiplication in Finite Fields , 1983, Theor. Comput. Sci..

[9]  G. Manzini,et al.  Invertible Linear Cellular Automata overZm , 1998 .

[10]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[11]  V. Pan,et al.  Polynomial and matrix computations (vol. 1): fundamental algorithms , 1994 .

[12]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[13]  Giovanni Manzini,et al.  Invertible Linear Cellular Automata over Zm: Algorithmic and Dynamical Aspects , 1998, J. Comput. Syst. Sci..

[14]  Parimal Pal Chaudhuri,et al.  Additive Cellular Automata Theory and Applications Volume I , 1997 .

[15]  Alexandre Ostrowski Recherches sur la méthode de graeffe et les zéros des polynomes et des séries de laurent , 1940 .

[16]  Philip Feinsilver,et al.  Circulants, inversion of circulants, and some related matrix algebras , 1984 .

[17]  Giovanni Manzini,et al.  A Complete and Efficiently Computable Topological Classification of D-dimensional Linear Cellular Automata over Zm , 1997, Theor. Comput. Sci..

[18]  Giovanni Manzini,et al.  Inversion of circulant matrices over Zm , 1998, Math. Comput..

[19]  Santanu Chattopadhyay,et al.  Additive cellular automata : theory and applications , 1997 .

[20]  Puhua Guan,et al.  Exact results for deterministic cellular automata with additive rules , 1986 .

[21]  Arjen K. Lenstra,et al.  Algorithms in Number Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.