Numerical analysis of rate-dependent dynamic composite delamination

Abstract We present a simplified analysis of dynamic delamination in composites. Our task is the development of a simple tool to evaluate rate-dependency effects on crack propagation. The delamination process of a composite layer from a rigid substrate is modelled through a cohesive law with a rate-dependent fracture energy, assumed to depend on the velocity of the displacement jump. We model the composite layer as an Euler–Bernoulli beam and analyze the dynamics of the delamination growth as a function of the loading rate. We obtain the numerical solution by using a spatial central finite difference scheme coupled with explicit time integration.

[1]  Joshua R. Smith,et al.  Universal binding energy curves for metals and bimetallic interfaces , 1981 .

[2]  T. Huang,et al.  The Effect of Rotatory Inertia and of Shear Deformation on the Frequency and Normal Mode Equations of Uniform Beams With Simple End Conditions , 1961 .

[3]  M. Ortiz,et al.  Three-dimensional modeling of intersonic shear-crack growth in asymmetrically loaded unidirectional composite plates , 2002 .

[4]  K. T. Ramesh,et al.  Dynamic characterization of layered and graded structures under impulsive loading , 2001 .

[5]  Michael Ortiz,et al.  Three‐dimensional finite‐element simulation of the dynamic Brazilian tests on concrete cylinders , 2000 .

[6]  John R. Smith,et al.  Universal features of bonding in metals , 1983 .

[7]  Alberto Corigliano,et al.  Rate-dependent interface models: formulation and numerical applications , 2001 .

[8]  Serge Abrate,et al.  Impact on Composite Structures , 1998 .

[9]  Ares J. Rosakis,et al.  Intersonic crack growth in bimaterial interfaces : an investigation of crack face contact , 1998 .

[10]  Jay Fineberg,et al.  Instability in dynamic fracture , 1999 .

[11]  Alberto Corigliano,et al.  Numerical modeling of rate-dependent debonding processes in composites , 2003 .

[12]  Bhushan Lal Karihaloo,et al.  Comprehensive structural integrity , 2003 .

[13]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[14]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[15]  P. Krysl,et al.  Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture , 1999 .

[16]  Chad M. Landis,et al.  Crack velocity dependent toughness in rate dependent materials , 2000 .

[17]  A. Rosakis,et al.  Subsonic and intersonic mode II crack propagation with a rate-dependent cohesive zone , 2002 .

[18]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[19]  O. Allix,et al.  Some aspects of interlaminar degradation in composites , 2000 .

[20]  M. Ortiz,et al.  Three‐dimensional cohesive modeling of dynamic mixed‐mode fracture , 2001 .

[21]  Ares J. Rosakis,et al.  The effect of bond strength and loading rate on the conditions governing the attainment of intersonic crack growth along interfaces , 1999 .

[22]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[23]  A. Rosakis,et al.  Analysis of intersonic crack growth in unidirectional fiber-reinforced composites , 1999 .

[24]  A. Rosakis,et al.  Experimental observations of intersonic crack growth in asymmetrically loaded unidirectional composite plates , 2001 .

[25]  Corigliano,et al.  Comprehensive Structural Integrity || Damage and Fracture Mechanics Techniques for Composite Structures , 2003 .

[26]  F. Costanzo,et al.  Steady growth of a crack with a rate and temperature sensitive cohesive zone , 2002 .