An effective variable selection heuristic in SLS for weighted Max-2-SAT

Stochastic local search (SLS) is an appealing method for solving the maximum satisfiability (Max-SAT) problem. This paper proposes a new variable selection heuristic for Max-SAT local search algorithms, which works particularly well for weighted Max-2-SAT instances. Evolving from the recent configuration checking strategy, this new heuristic works in three levels and is called CCTriplex. According to the CCTriplex heuristic, a variable that is both decreasing and configuration changed has the higher priority to be flipped than a decreasing variable, which in turn has the higher priority than a configuration changed variable. The CCTriplex heuristic is used to develop a new SLS algorithm for weighted Max-2-SAT called CCMaxSAT. We evaluate CCMaxSAT on random benchmarks with different densities, and the hand crafted Frb benchmark, as well as weighted Max-2-SAT instances encoded from MaxCut, MaxClique and sports scheduling problems. Compared with the state-of-the-art SLS solver for weighted Max-2-SAT called ITS and the best SLS solver in Max-SAT Evaluation 2012 namely ubcsat-IRoTS, as well as the famous complete solver wMaxSATz, our algorithm CCMaxSAT shows rather good performance on all the benchmarks.

[1]  Hartmut Prautzsch,et al.  Creating Optimized Cut-Out Sheets for Paper Models from Meshes , 2011 .

[2]  Ke Xu,et al.  A Simple Model to Generate Hard Satisfiable Instances , 2005, IJCAI.

[3]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[4]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[5]  Kaile Su,et al.  Local search for Boolean Satisfiability with configuration checking and subscore , 2013, Artif. Intell..

[6]  Petteri Kaski,et al.  The Near Resolvable 2-(13, 4, 3) Designs and Thirteen-Player Whist Tournaments , 2005, Des. Codes Cryptogr..

[7]  Gintaras Palubeckis SOLVING THE WEIGHTED MAX-2-SAT PROBLEM WITH ITERATED TABU SEARCH , 2015 .

[8]  Zhe Wu,et al.  An Efficient Global-Search Strategy in Discrete Lagrangian Methods for Solving Hard Satisfiability Problems , 2000, AAAI/IAAI.

[9]  Chu Min Li,et al.  Diversification and Determinism in Local Search for Satisfiability , 2005, SAT.

[10]  Timo Soininen,et al.  Extending and implementing the stable model semantics , 2000, Artif. Intell..

[11]  Thomas Stützle,et al.  Iterated Robust Tabu Search for MAX-SAT , 2003, Canadian Conference on AI.

[12]  Kaile Su,et al.  Improving Local Search for Random 3-SAT Using Quantitative Configuration Checking , 2012, ECAI.

[13]  Rolf Niedermeier,et al.  Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT , 2003, Discret. Appl. Math..

[14]  Holger H. Hoos,et al.  Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.

[15]  Kaile Su,et al.  Configuration Checking with Aspiration in Local Search for SAT , 2012, AAAI.

[16]  F. Glover,et al.  Using the unconstrained quadratic program to model and solve Max 2-SAT problems , 2005 .

[17]  Holger H. Hoos,et al.  On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT , 1999, AAAI/IAAI.

[18]  Jia-Huai You,et al.  Unfolding partiality and disjunctions in stable model semantics , 2000, TOCL.

[19]  Dmitri V. Krioukov,et al.  AS relationships: inference and validation , 2006, CCRV.

[20]  Wei Wu,et al.  Focused Random Walk with Configuration Checking and Break Minimum for Satisfiability , 2013, CP.

[21]  David Bañeres,et al.  The Impact of Max-SAT Resolution-Based Preprocessors on Local Search Solvers , 2010, J. Satisf. Boolean Model. Comput..

[22]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[23]  Felip Manyà,et al.  Exploiting Cycle Structures in Max-SAT , 2009, SAT.

[24]  Abdul Sattar,et al.  NuMVC: An Efficient Local Search Algorithm for Minimum Vertex Cover , 2014, J. Artif. Intell. Res..

[25]  Wayne J. Pullan,et al.  Simple ingredients leading to very efficient heuristics for the maximum clique problem , 2008, J. Heuristics.

[26]  Abdul Sattar,et al.  Local search with edge weighting and configuration checking heuristics for minimum vertex cover , 2011, Artif. Intell..

[27]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[28]  Maria Luisa Bonet,et al.  SAT-based MaxSAT algorithms , 2013, Artif. Intell..

[29]  Albert Oliveras,et al.  MiniMaxSAT: An Efficient Weighted Max-SAT solver , 2008, J. Artif. Intell. Res..

[30]  Felip Manyà,et al.  New Inference Rules for Max-SAT , 2007, J. Artif. Intell. Res..

[31]  Holger H. Hoos,et al.  An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.

[32]  Panos M. Pardalos,et al.  GRASP with path relinking for the weighted MAXSAT problem , 2007, ACM J. Exp. Algorithmics.

[33]  Ke Xu,et al.  Random constraint satisfaction: Easy generation of hard (satisfiable) instances , 2007, Artif. Intell..

[34]  Tomomi Matsui,et al.  Semidefinite programming based approaches to the break minimization problem , 2006, Comput. Oper. Res..

[35]  Harry Zhang,et al.  Combining Adaptive Noise and Look-Ahead in Local Search for SAT , 2007, SAT.

[36]  Kaile Su,et al.  Local Search with Configuration Checking for SAT , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[37]  Kaile Su,et al.  Within-problem Learning for Efficient Lower Bound Computation in Max-SAT Solving , 2008, AAAI.

[38]  Toniann Pitassi,et al.  Stochastic Boolean Satisfiability , 2001, Journal of Automated Reasoning.

[39]  Mauro Brunato,et al.  Cooperating local search for the maximum clique problem , 2011, J. Heuristics.

[40]  Majid Sarrafzadeh,et al.  Pattern routing: use and theory for increasing predictability andavoiding coupling , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..