Classification models based on Tanaka's fuzzy linear regression approach: The case of customer satisfaction modeling

Fuzzy linear regression (FLR) approaches are widely used for modeling relations between variables that involve human judgments, qualitative and imprecise data. Tanaka’s FLR analysis is the first one developed and widely used for this purpose. However, this method is not appropriate for classification problems, because it can only handle continuous type dependent variables rather than categorical. In this study, we propose three alternative approaches for building classification models, for a customer satisfaction survey data, based on Tanaka’s FLR approach. In these models, we aim to reflect both random and fuzzy types of uncertainties in the data in different ways, and compare their performances using several classification performance measures. Thus, this study contributes to the field of fuzzy classification by developing Tanaka based classification models.

[1]  Junzo Watada,et al.  Possibilistic linear regression analysis for fuzzy data , 1989 .

[2]  Arkady Bolotin Fuzzification of Linear Regression Models with Indicator Variables in Medical Decision Makin , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[3]  Mei-Ling Huang,et al.  Glaucoma detection using adaptive neuro-fuzzy inference system , 2007, Expert Syst. Appl..

[4]  T. Ross Fuzzy Logic with Engineering Applications , 1994 .

[5]  H. Moskowitz,et al.  Fuzzy versus statistical linear regression , 1996 .

[6]  Shigeo Abe,et al.  A fuzzy classifier with ellipsoidal regions , 1997, IEEE Trans. Fuzzy Syst..

[7]  József Dombi,et al.  Rule based fuzzy classification using squashing functions , 2008, J. Intell. Fuzzy Syst..

[8]  Constantin Zopounidis,et al.  Multicriteria classification and sorting methods: A literature review , 2002, Eur. J. Oper. Res..

[9]  C. R. Bector,et al.  A simple method for computation of fuzzy linear regression , 2005, Eur. J. Oper. Res..

[10]  Ebrahim Nasrabadi,et al.  A mathematical-programming approach to fuzzy linear regression analysis , 2004, Appl. Math. Comput..

[11]  Magne Setnes,et al.  Fuzzy relational classifier trained by fuzzy clustering , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[12]  I. Burhan Türksen,et al.  Increasing accuracy of two-class pattern recognition with enhanced fuzzy functions , 2009, Expert Syst. Appl..

[13]  Pierpaolo D'Urso,et al.  Linear regression analysis for fuzzy = crisp input and fuzzy = crisp output data , 2015 .

[14]  Hsiao-Fan Wang,et al.  Insight of a fuzzy regression model , 2000, Fuzzy Sets Syst..

[15]  Mei-Ling Huang,et al.  Erratum to: Glaucoma detection using adaptive neuro-fuzzy inference system [Expert Systems with Applications 32 (2) (2007) 458-468] , 2007, Expert Syst. Appl..

[16]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[17]  Pierpaolo D'Urso,et al.  A least-squares approach to fuzzy linear regression analysis , 2000 .

[18]  Ram R. Bishu,et al.  Evaluation of fuzzy linear regression models by comparing membership functions , 1998, Fuzzy Sets Syst..

[19]  I. Burhan Türksen,et al.  A New Classifier Design with Fuzzy Functions , 2009, RSFDGrC.

[20]  Bilal M. Ayyub,et al.  Fuzzy regression methods - a comparative assessment , 2001, Fuzzy Sets Syst..

[21]  Lucien Duckstein,et al.  Multi-objective fuzzy regression: a general framework , 2000, Comput. Oper. Res..

[22]  Georg Peters Fuzzy linear regression with fuzzy intervals , 1994 .

[23]  Alex Meystel,et al.  CHAPTER 1 – Outline of a Computational Theory of Perceptions Based on Computing with Words , 2000 .

[24]  A. Celmins Least squares model fitting to fuzzy vector data , 1987 .

[25]  Hsiao-Fan Wang,et al.  Resolution of fuzzy regression model , 2000, Eur. J. Oper. Res..

[26]  Masatoshi Sakawa,et al.  Multiobjective fuzzy linear regression analysis for fuzzy input-output data , 1992 .

[27]  Witold Pedrycz,et al.  Evaluation of fuzzy linear regression models , 1991 .

[28]  Phil Diamond,et al.  Fuzzy least squares , 1988, Inf. Sci..

[29]  Chiang Kao,et al.  A fuzzy linear regression model with better explanatory power , 2002, Fuzzy Sets Syst..

[30]  I. Burhan Türksen,et al.  Fuzzy functions with LSE , 2008, Appl. Soft Comput..