Interfacial properties of the nanostructured dye-sensitized solid heterojunction TiO(2)/RuL(2)(NCS)(2)/CuI.
暂无分享,去创建一个
H. Rensmo | H. Siegbahn | E. Johansson | B. Mahrov | P. Uvdal | A. Sandell | J. Richter | J. Blomquist | P. Karlsson | S. Bolik
[1] P. A. Brühwiler,et al. Adsorption and charge transfer study of bi-isonicotinic acid on in situ grown anatase TiO2 nanoparticles , 2004 .
[2] Anders Hagfeldt,et al. Determination of the electronic density of states at a nanostructured TiO2/Ru-dye/electrolyte interface by means of photoelectron spectroscopy , 2002 .
[3] P. A. Brühwiler,et al. Electron dynamics within Ru-2,2'-bipyridine complexes: an N1s core level excitation study , 2002 .
[4] Anders Sandell,et al. Titanium dioxide thin-film growth on silicon(111) by chemical vapor deposition of titanium(IV) isopropoxide , 2002 .
[5] Luc Patthey,et al. Experimental evidence for sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor , 2002, Nature.
[6] G.K.R. Senadeera,et al. Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide , 2001 .
[7] P. Cumpson. Estimation of inelastic mean free paths for polymers and other organic materials: use of quantitative structure–property relationships , 2001 .
[8] Daniel T. Schwartz,et al. Electrodeposited Nanocomposite n–p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics , 2000 .
[9] H. Rensmo,et al. XPS studies of Ru-polypyridine complexes for solar cell applications , 1999 .
[10] P. A. Brühwiler,et al. Adsorption of bi-isonicotinic acid on rutile TiO2(110) , 1999 .
[11] Y. Wada,et al. Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole , 1998 .
[12] K. Tennakone,et al. A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex , 1998 .
[13] H. Rensmo,et al. Absorption and electrochemical properties of ruthenium(II) dyes, studied by semiempirical quantum chemical calculations , 1998 .
[14] J. L. Woolfrey,et al. Vibrational Spectroscopic Study of the Coordination of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes to the Surface of Nanocrystalline Titania , 1998 .
[15] Anders Hagfeldt,et al. The electronic structure of the cis-bis(4,4′-dicarboxy-2,2′-bipyridine)-bis(isothiocyanato)ruthenium(II) complex and its ligand 2,2′-bipyridyl-4,4′-dicarboxylic acid studied with electron spectroscopy , 1997 .
[16] K. Gordon,et al. In situ infrared spectroscopic analysis of the adsorption of ruthenium(II) bipyridyl dicarboxylic acid photosensitisers to TiO2 in aqueous solutions , 1997 .
[17] M. Matsumoto,et al. A dye sensitized TiO2 photoelectrochemical cell constructed with polymer solid electrolyte , 1996 .
[18] J. Dufour,et al. Electronic structure of the copper halides CuCl, CuBr and Cul , 1996 .
[19] J. T. Ranney,et al. The Surface Science of Metal Oxides , 1995 .
[20] K. Tennakone,et al. A dye-sensitized nano-porous solid-state photovoltaic cell , 1995 .
[21] J. F. Garvey,et al. The nature of copper in thin films of copper iodide grown by laser-assisted molecular beam deposition: comparative ESCA and EDXS studies , 1994 .
[22] Francis Levy,et al. Photoluminescence in TiO2 anatase single crystals , 1993 .
[23] M. Grätzel,et al. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.
[24] O. Björneholm,et al. Photoemission spectroscopy at MAX‐Lab , 1991 .
[25] Rossi,et al. Studies of copper valence states with Cu L3 x-ray-absorption spectroscopy. , 1989, Physical review. B, Condensed matter.
[26] T. Kitamura,et al. Structural Control of Porous Nano-Space in Dye-Sensitized TiO2 Solar Cells* , 1999 .