The NMR indirect nuclear spin–spin coupling constant of the HD molecule

We present new calculated and experimental values of the NMR indirect nuclear spin–spin coupling constant in HD. In the quantum-chemical ab initio calculations, the full configuration-interaction (FCI) method is used, yielding an equilibrium value of 41.22 Hz in the basis-set limit. Adding a calculated zero-point vibrational correction of 1.89 Hz and a temperature correction of 0.20 Hz at 300 K, we obtain a total calculated spin–spin coupling constant of J FCI(HD) = 43.31(5) Hz at 300 K. This result is within the error bars of the experimental gas-phase NMR value, J exp(HD) = 43.26(6) Hz, obtained by extrapolating values measured in HD–He mixtures to zero density.

[1]  S. Sauer,et al.  Pople Style Basis Sets for the Calculation of NMR Spin-Spin Coupling Constants: the 6-31G-J and 6-311G-J Basis Sets. , 2011, Journal of chemical theory and computation.

[2]  R. Moszynski,et al.  Weak intermolecular interactions in gas-phase nuclear magnetic resonance. , 2011, The Journal of chemical physics.

[3]  G. Łach,et al.  NMR shielding constants in hydrogen molecule isotopomers , 2011 .

[4]  Jürgen Gauss,et al.  Quantitative prediction of gas-phase 19F nuclear magnetic shielding constants. , 2003, The Journal of chemical physics.

[5]  F. Jensen The Basis Set Convergence of Spin-Spin Coupling Constants Calculated by Density Functional Methods. , 2006, Journal of chemical theory and computation.

[6]  Frank Jensen,et al.  Estimating the Hartree—Fock limit from finite basis set calculations , 2005 .

[7]  K. Ruud,et al.  Ro‐Vibrational Corrections to NMR Parameters , 2004 .

[8]  M. Bühl,et al.  Calculation of NMR and EPR parameters : theory and applications , 2004 .

[9]  B. C. Garrett,et al.  A hierarchical family of global analytic Born-Oppenheimer potential energy surfaces for the H+H2 reaction ranging in quality from double-zeta to the complete basis set limit , 2002 .

[10]  J. Gauss,et al.  Triple excitation effects in coupled-cluster calculations of indirect spin–spin coupling constants , 2001 .

[11]  M. C. Ruiz de Azúa,et al.  NMR 1 J(HD) coupling in HD as a function of interatomic distance in the presence of an external magnetic field , 2000 .

[12]  B. C. Garrett,et al.  The utility of many-body decompositions for the accurate basis set extrapolation of ab initio data , 1999 .

[13]  T. Enevoldsen,et al.  Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD) , 1998 .

[14]  K. Ruud,et al.  Basis-set dependence of nuclear spin-spin coupling constants , 1998 .

[15]  J. Gauss,et al.  Analytic CCSD(T) second derivatives , 1997 .

[16]  G. Bacskay ON THE CALCULATION OF NUCLEAR SPIN-SPIN COUPLING CONSTANTS. THE BOND LENGTH DEPENDENCE OF THE FERMI CONTACT TERM IN H2 AND HD , 1995 .

[17]  H. Ågren,et al.  Indirect nuclear spin–spin coupling constants from multiconfiguration linear response theory , 1992 .

[18]  W. T. Raynes,et al.  Magnetic field‐dependent nuclear spin–spin coupling , 1992 .

[19]  G. Scuseria,et al.  Nuclear spin-spin coupling constant of hydrogen molecule with deuterium (HD) , 1988 .

[20]  J. Kowalewski Calculations of Nuclear Spin-Spin Couplings , 1982 .

[21]  P. Siegbahn,et al.  Large configuration interaction calculations of nuclear spin—spin coupling constants. I. HD molecule , 1974 .