Topological Fisheye Views for Visualizing Large Graphs

Graph drawing is a basic visualization tool. For graphs of up to hundreds of nodes and edges, there are many effective techniques available. At greater scale, data density and occlusion problems often negate its effectiveness. Conventional pan-and-zoom, and multiscale and geometric fisheye views are not fully satisfactory solutions to this problem. As an alternative, we describe a topological zooming method. It is based on the precomputation of a hierarchy of coarsened graphs, which are combined on the fly into renderings with the level of detail dependent on the distance from one or more foci. We also discuss a related distortion method that allows our technique to achieve constant information density displays

[1]  Kozo Sugiyama,et al.  Layout Adjustment and the Mental Map , 1995, J. Vis. Lang. Comput..

[2]  Bill Cheswick,et al.  Mapping the Internet , 1999, Computer.

[3]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[4]  Manojit Sarkar,et al.  Graphical fisheye views of graphs , 1992, CHI.

[5]  David Harel,et al.  Drawing Huge Graphs by Algebraic Multigrid Optimization , 2003, Multiscale Model. Simul..

[6]  Richard F. Barrett,et al.  Matrix Market: a web resource for test matrix collections , 1996, Quality of Numerical Software.

[7]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[8]  Guy Melançon,et al.  Multiscale visualization of small world networks , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[9]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[10]  Ramana Rao,et al.  The Hyperbolic Browser: A Focus + Context Technique for Visualizing Large Hierarchies , 1996, J. Vis. Lang. Comput..

[11]  Colin Ware,et al.  Visualization of Large Nested Graphs in 3D: Navigation and Interaction , 1998, J. Vis. Lang. Comput..

[12]  Emanuel G. Noik,et al.  Exploring large hyperdocuments: fisheye views of nested networks , 1993, Hypertext.

[13]  David Harel,et al.  A multi-scale algorithm for drawing graphs nicely , 2001, Discret. Appl. Math..

[14]  Andrzej Lingas,et al.  A Linear-time Construction of the Relative Neighborhood Graph From the Delaunay Triangulation , 1994, Comput. Geom..

[15]  M. Sheelagh T. Carpendale,et al.  Making distortions comprehensible , 1997, Proceedings. 1997 IEEE Symposium on Visual Languages (Cat. No.97TB100180).

[16]  David Harel,et al.  Graph Drawing by High-Dimensional Embedding , 2002, J. Graph Algorithms Appl..

[17]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[18]  Kurt Mehlhorn,et al.  The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.

[19]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[20]  Benjamin B. Bederson,et al.  Space-scale diagrams: understanding multiscale interfaces , 1995, CHI '95.

[21]  Tamara Munzner,et al.  H3: laying out large directed graphs in 3D hyperbolic space , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.