Adenosine A2A Receptors Are Essential for Long-Term Potentiation of NMDA-EPSCs at Hippocampal Mossy Fiber Synapses

[1]  S. Heinemann,et al.  GluR7 is an essential subunit of presynaptic kainate autoreceptors at hippocampal mossy fiber synapses , 2007, Proceedings of the National Academy of Sciences.

[2]  N. Dale,et al.  Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus1 , 2007, Journal of neurochemistry.

[3]  D. Perrais,et al.  Short-Term Plasticity of Kainate Receptor-Mediated EPSCs Induced by NMDA Receptors at Hippocampal Mossy Fiber Synapses , 2007, The Journal of Neuroscience.

[4]  F. Ciruela,et al.  Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1–A2A Receptor Heteromers , 2006, The Journal of Neuroscience.

[5]  S. Tonegawa,et al.  Hippocampal CA3 NMDA Receptors Are Crucial for Adaptive Timing of Trace Eyeblink Conditioned Response , 2006, The Journal of Neuroscience.

[6]  R. Anwyl,et al.  Long-Term Depression of NMDA Receptor-Mediated Synaptic Transmission Is Dependent on Activation of Metabotropic Glutamate Receptors and Is Altered to Long-Term Potentiation by Low Intracellular Calcium Buffering , 2006, The Journal of Neuroscience.

[7]  Howard Eichenbaum,et al.  The Role of CA3 Hippocampal NMDA Receptors in Paired Associate Learning , 2006, The Journal of Neuroscience.

[8]  R. Cunha,et al.  Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat , 2005, Neuroscience.

[9]  J. Roder,et al.  Modulation of NMDA Receptors by Pituitary Adenylate Cyclase Activating Peptide in CA1 Neurons Requires Gαq, Protein Kinase C, and Activation of Src , 2005, The Journal of Neuroscience.

[10]  Dietmar Schmitz,et al.  Synaptic plasticity at hippocampal mossy fibre synapses , 2005, Nature Reviews Neuroscience.

[11]  R. Cunha,et al.  Adenosine A2A receptors and metabotropic glutamate 5 receptors are co‐localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N‐methyl‐d‐aspartate effects , 2005, Journal of neurochemistry.

[12]  Cathryn L. Kubera,et al.  Astrocytic Purinergic Signaling Coordinates Synaptic Networks , 2005, Science.

[13]  R. Cunha,et al.  Adenosine A2A receptors control the extracellular levels of adenosine through modulation of nucleoside transporters activity in the rat hippocampus , 2005, Journal of neurochemistry.

[14]  B. Fredholm,et al.  The Role of Extracellular Adenosine in Regulating Mossy Fiber Synaptic Plasticity , 2005, The Journal of Neuroscience.

[15]  C. Mulle,et al.  Postnatal maturation of mossy fibre excitatory transmission in mouse CA3 pyramidal cells: a potential role for kainate receptors , 2004, The Journal of physiology.

[16]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[17]  D. Schneider,et al.  Adenosine A2A receptor-induced inhibition of NMDA and GABAA receptor-mediated synaptic currents in a subpopulation of rat striatal neurons , 2004, Neuropharmacology.

[18]  Michael W. Salter,et al.  Src kinases: a hub for NMDA receptor regulation , 2004, Nature Reviews Neuroscience.

[19]  J. Ribeiro,et al.  Activation of Adenosine A2A Receptor Facilitates Brain-Derived Neurotrophic Factor Modulation of Synaptic Transmission in Hippocampal Slices , 2004, The Journal of Neuroscience.

[20]  R. Nicoll,et al.  Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Lacaille,et al.  Depolarization-Induced Long-Term Depression at Hippocampal Mossy Fiber-CA3 Pyramidal Neuron Synapses , 2003, The Journal of Neuroscience.

[22]  J. Roder,et al.  Co-stimulation of mGluR5 and N-Methyl-D-aspartate Receptors Is Required for Potentiation of Excitatory Synaptic Transmission in Hippocampal Neurons* , 2003, Journal of Biological Chemistry.

[23]  M. Quirk,et al.  Hippocampal CA3 NMDA Receptors Are Crucial for Memory Acquisition of One-Time Experience , 2003, Neuron.

[24]  G. Buzsáki,et al.  Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo , 2002, Nature Neuroscience.

[25]  B. Fredholm,et al.  Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition , 2002, Neuroscience.

[26]  M. Quirk,et al.  Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall , 2002, Science.

[27]  R. Cunha,et al.  Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors , 2001, Neurochemistry International.

[28]  M. Bear,et al.  Bidirectional, Activity-Dependent Regulation of Glutamate Receptors in the Adult Hippocampus In Vivo , 2000, Neuron.

[29]  D. Henze,et al.  The multifarious hippocampal mossy fiber pathway: a review , 2000, Neuroscience.

[30]  Daniel Johnston,et al.  Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism , 1999, Nature Neuroscience.

[31]  A. Levey,et al.  Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  P. Correia‐de‐Sá,et al.  Presynaptic A1 inhibitory/A2A facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm. , 1996, Journal of neurophysiology.

[33]  R Lujan,et al.  Perisynaptic Location of Metabotropic Glutamate Receptors mGluR1 and mGluR5 on Dendrites and Dendritic Spines in the Rat Hippocampus , 1996, The European journal of neuroscience.

[34]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[35]  R. Anwyl,et al.  Tetanically induced LTP involves a similar increase in the AMPA and NMDA receptor components of the excitatory postsynaptic current: investigations of the involvement of mGlu receptors , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  Michael J. Rowan,et al.  Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation , 1994, Nature.

[37]  R. Nicoll,et al.  The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation , 1993, Neuron.

[38]  P. Nunn,et al.  Carbamate formation and the neurotoxicity of L-alpha amino acids. , 1991, Science.

[39]  G. Collingridge,et al.  Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus , 1991, Nature.

[40]  R. Nicoll,et al.  Comparison of two forms of long-term potentiation in single hippocampal neurons. , 1990, Science.

[41]  P. Svenningsson,et al.  Adenosine and brain function. , 2005, International review of neurobiology.

[42]  J. Macdonald,et al.  Signaling molecules and receptor transduction cascades that regulate NMDA receptor-mediated synaptic transmission. , 2003, International review of neurobiology.

[43]  R. Nicoll,et al.  The Role of Ca * + Entry v ia Synaptically Activated NMDA Receptors in the Induction of Long-Term Potentiation , 2003 .

[44]  J. Ribeiro,et al.  Activation of Adenosine a 2a Receptor Facilitates Brain- Derived Neurotrophic Factor Modulation of Synaptic Transmission in Hippocampal Slices , 2003 .

[45]  B. Fredholm,et al.  Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition. , 2002, Neuroscience.

[46]  T. Dunwiddie,et al.  The Role and Regulation of Adenosine in the Central Nervous System , 2022 .