Internally tagged ubiquitin: a tool to identify linear polyubiquitin-modified proteins by mass spectrometry

Ubiquitination controls a plethora of cellular processes. Modifications by linear polyubiquitin have so far been linked with acquired and innate immunity, lymphocyte development and genotoxic stress response. Until now, a single E3 ligase complex (LUBAC), one specific deubiquitinase (OTULIN) and a very few linear polyubiquitinated substrates have been identified. Current methods for studying lysine-based polyubiquitination are not suitable for the detection of linear polyubiquitin-modified proteins. Here, we present an approach to discovering linear polyubiquitin-modified substrates by combining a lysine-less internally tagged ubiquitin (INT-Ub.7KR) with SILAC-based mass spectrometry. We applied our approach in TNFα-stimulated T-REx HEK293T cells and validated several newly identified linear polyubiquitin targets. We demonstrated that linear polyubiquitination of the novel LUBAC substrate TRAF6 is essential for NFκB signaling.

[1]  A. Strasser,et al.  The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. , 2012, Molecular cell.

[2]  Sebastian A. Wagner,et al.  Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass , 2012, Nature Cell Biology.

[3]  Nobuhiro Nakamura,et al.  Ubiquitin System , 2018, International journal of molecular sciences.

[4]  H. Stenmark,et al.  Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation. , 2008, Molecular biology of the cell.

[5]  L. Jensen,et al.  Mass Spectrometric Analysis of Lysine Ubiquitylation Reveals Promiscuity at Site Level* , 2010, Molecular & Cellular Proteomics.

[6]  Anthony W. Purcell,et al.  Linear ubiquitination prevents inflammation and regulates immune signalling , 2011, Nature.

[7]  Christoph H Emmerich,et al.  Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. , 2009, Molecular cell.

[8]  David Komander,et al.  Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages , 2012, Nature Reviews Molecular Cell Biology.

[9]  Tharan Srikumar,et al.  The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesisThe linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis , 2013 .

[10]  T. Spector,et al.  UBE2L3 Polymorphism Amplifies NF-κB Activation and Promotes Plasma Cell Development, Linking Linear Ubiquitination to Multiple Autoimmune Diseases , 2015, American journal of human genetics.

[11]  F. Tokunaga Linear ubiquitination-mediated NF-κB regulation and its related disorders. , 2013, Journal of biochemistry.

[12]  Sebastian A. Wagner,et al.  OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. , 2013, Molecular cell.

[13]  S. Klauck,et al.  Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti , 2000, Nature.

[14]  C. Bodemer,et al.  X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production , 2006, The Journal of experimental medicine.

[15]  K. Rittinger,et al.  LUBAC synthesizes linear ubiquitin chains via a thioester intermediate , 2012, EMBO reports.

[16]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[17]  Xin Lin,et al.  The E3 Ligase TRAF6 Regulates Akt Ubiquitination and Activation , 2009, Science.

[18]  J. Chin,et al.  An Ankyrin-repeat ubiquitin binding domain determines TRABID’s specificity for atypical ubiquitin chains , 2011, Nature Structural &Molecular Biology.

[19]  Nobuhiro Suzuki,et al.  Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation , 2009, Cell.

[20]  S. Kagami,et al.  Survival of mature T cells depends on signaling through HOIP , 2016, Scientific Reports.

[21]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[22]  D. Y. Lin,et al.  Biochemical and Structural Studies of a HECT-like Ubiquitin Ligase from Escherichia coli O157:H7 , 2010, The Journal of Biological Chemistry.

[23]  G. Bepler,et al.  HDAC6 deacetylates and ubiquitinates MSH2 to maintain proper levels of MutSα. , 2014, Molecular cell.

[24]  Chunaram Choudhary,et al.  Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation , 2015, Molecular systems biology.

[25]  Hao Wu,et al.  Site-specific Lys-63-linked Tumor Necrosis Factor Receptor-associated Factor 6 Auto-ubiquitination Is a Critical Determinant of IκB Kinase Activation* , 2006, Journal of Biological Chemistry.

[26]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2016, Nucleic Acids Res..

[27]  J. Ting,et al.  The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation , 2014, The Journal of experimental medicine.

[28]  W. Wurst,et al.  The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. , 2013, Molecular cell.

[29]  A. Strasser,et al.  Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis , 2016, Nature Communications.

[30]  M. Schilstra,et al.  Circular dichroism and its application to the study of biomolecules. , 2008, Methods in cell biology.

[31]  Ivan Dikic,et al.  Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP , 2013, Nature.

[32]  Y. Saeki,et al.  Suppression of LUBAC‐mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN , 2014, Genes to cells : devoted to molecular & cellular mechanisms.

[33]  R. Baker,et al.  An efficient system for high‐level expression and easy purification of authentic recombinant proteins , 2004, Protein science : a publication of the Protein Society.

[34]  T. Sixma,et al.  The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension , 2012, The EMBO journal.

[35]  A. Fischer,et al.  X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling , 2001, Nature Genetics.

[36]  A. Siddiqui,et al.  Hepatitis B Virus-Induced Parkin-Dependent Recruitment of Linear Ubiquitin Assembly Complex (LUBAC) to Mitochondria and Attenuation of Innate Immunity , 2016, PLoS pathogens.

[37]  Keiji Tanaka,et al.  Defective immune responses in mice lacking LUBAC‐mediated linear ubiquitination in B cells , 2013, The EMBO journal.

[38]  Kay Hofmann,et al.  OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin , 2013, Cell.

[39]  Sebastian A. Wagner,et al.  A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles* , 2011, Molecular & Cellular Proteomics.

[40]  Y. Saeki,et al.  SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex , 2011, Nature.

[41]  Y. Shimizu,et al.  Linear ubiquitination in immunity , 2015, Immunological reviews.

[42]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[43]  R. Kelley,et al.  Improved Quantitative Mass Spectrometry Methods for Characterizing Complex Ubiquitin Signals , 2010, Molecular & Cellular Proteomics.

[44]  Patrick G. A. Pedrioli,et al.  Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains , 2013, Proceedings of the National Academy of Sciences.

[45]  Zhijian J. Chen,et al.  Activation of the IκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain , 2000, Cell.

[46]  S. Akira,et al.  Involvement of linear polyubiquitylation of NEMO in NF-κB activation , 2009, Nature Cell Biology.

[47]  S. Klauck,et al.  Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. , 2000, Nature.

[48]  Thomas M. Durcan,et al.  The E3 Ubiquitin Ligase Parkin Is Recruited to the 26 S Proteasome via the Proteasomal Ubiquitin Receptor Rpn13* , 2015, The Journal of Biological Chemistry.

[49]  Keiji Tanaka,et al.  A ubiquitin ligase complex assembles linear polyubiquitin chains , 2006, The EMBO journal.

[50]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[51]  Synthesis and analysis of K11-linked ubiquitin chains. , 2012, Methods in molecular biology.

[52]  R. Kelley,et al.  Engineering and structural characterization of a linear polyubiquitin-specific antibody. , 2012, Journal of molecular biology.

[53]  R. Baker,et al.  Using deubiquitylating enzymes as research tools. , 2005, Methods in enzymology.

[54]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[55]  K. Mechtler,et al.  Linear ubiquitination by LUBEL has a role in Drosophila heat stress response , 2016, EMBO reports.

[56]  Lan Huang,et al.  Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. , 2008, Journal of proteome research.

[57]  M. Mann,et al.  Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips , 2007, Nature Protocols.

[58]  B. Maček,et al.  SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis , 2011, Nature.

[59]  Samie R Jaffrey,et al.  Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling , 2010, Nature Biotechnology.

[60]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[61]  Alexander Varshavsky,et al.  Regulated protein degradation. , 2005, Trends in biochemical sciences.