MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS

We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic Particle-in-Cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind; and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and lunar magnetic anomaly simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross-sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.

[1]  AA. Nordlund,et al.  PARTICLE-IN-CELL SIMULATION OF ELECTRON ACCELERATION IN SOLAR CORONAL JETS , 2012, 1205.3486.

[2]  F. Mozer,et al.  Evidence of diffusion regions at a subsolar magnetopause crossing. , 2002, Physical review letters.

[3]  K. Zollner,et al.  The quadrupole magnetopause , 1985 .

[4]  John M. Greene,et al.  Locating three-dimensional roots by a bisection method , 1992 .

[5]  H. Tsunakawa,et al.  Mini‐magnetosphere over the Reiner Gamma magnetic anomaly region on the Moon , 2005 .

[6]  M. Heyn,et al.  The structure of reconnection layers: Application to the Earth's magnetopause , 1989 .

[7]  R. Tang,et al.  Dynamics and waves near multiple magnetic null points in reconnection diffusion region , 2009 .

[8]  E. Priest,et al.  Three-dimensional null point reconnection regimes , 2009 .

[9]  J. Finn,et al.  Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines , 1990 .

[10]  Maria Elena Innocenti,et al.  Momentum creation by drift instabilities in space and laboratory plasmas , 2007 .

[11]  Giovanni Lapenta,et al.  Evolutions of non-steady-state magnetic reconnection , 2008 .

[12]  Stefano Markidis,et al.  Scales of guide field reconnection at the hydrogen mass ratio , 2010 .

[13]  W. Daily,et al.  Magnetism and the interior of the Moon , 1974 .

[14]  D. Mitchell,et al.  Global mapping of lunar crustal magnetic fields by Lunar Prospector , 2008 .

[15]  In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail , 2006, physics/0606014.

[16]  K. Glassmeier,et al.  MHD simulations of quadrupolar paleomagnetospheres , 2004 .

[17]  S. Petrinec,et al.  Antiparallel and component reconnection at the dayside magnetopause , 2011 .

[18]  A. Divin,et al.  Lower hybrid drift instability at a dipolarization front , 2015 .

[19]  D. Pontin,et al.  Dynamic Topology and Flux Rope Evolution During Non-linear Tearing of 3D Null Point Current Sheets , 2014, 1406.1622.

[20]  若谷 誠宏 A. A. Galeev and R. N. Sudan 編: Handbook of Plasma Physics, Vol. 1; Basic Plasma Physics, 1 and 2, North-Holland, Amsterdam and New York, 1983, 1984, 2vols., 24.5×17.5cm, 1: 51,000円, 2: 43,560円. , 1985 .

[21]  Stefano Markidis,et al.  Multi-scale simulations of plasma with iPIC3D , 2010, Math. Comput. Simul..

[22]  D. Longcope Topological Methods for the Analysis of Solar Magnetic Fields , 2005 .

[23]  Erwin Laure,et al.  The Formation of a Magnetosphere with Implicit Particle-in-Cell Simulations , 2015, ICCS.

[24]  F. Mozer,et al.  Observations and simulations of asymmetric magnetic field reconnection , 2008 .

[25]  Stefano Markidis,et al.  Secondary reconnection sites in reconnection-generated flux ropes and reconnection fronts , 2015, Nature Physics.

[26]  F. Mozer,et al.  Rippling mode in the subsolar magnetopause current layer and its influence on three‐dimensional magnetic reconnection , 2011 .

[27]  J. Deca,et al.  Laboratory investigation of lunar surface electric potentials in magnetic anomaly regions , 2015 .

[28]  Erwin Laure,et al.  Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations , 2015 .

[29]  N. Murphy,et al.  The appearance, motion, and disappearance of three-dimensional magnetic null points , 2015, 1509.05915.

[30]  S. Markidis,et al.  Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection , 2010 .

[31]  T. Phan,et al.  Low‐latitude dayside magnetopause and boundary layer for high magnetic shear: 1. Structure and motion , 1996 .

[32]  K. Glassmeier,et al.  On the location of trapped particle populations in quadrupole magnetospheres , 2000 .

[33]  J. M. Smith,et al.  The structure of three‐dimensional magnetic neutral points , 1996 .

[34]  Clare E. Parnell,et al.  J un 2 00 7 A trilinear method for finding null points in a 3 D vector space , 2008 .

[35]  William Daughton,et al.  Electromagnetic properties of the lower-hybrid drift instability in a thin current sheet , 2003 .

[36]  P. A. Sweet,et al.  The production of high energy particles in solar flares , 1958 .

[37]  S. Markidis,et al.  On the electron dynamics during island coalescence in asymmetric magnetic reconnection , 2015, 1511.05693.

[38]  P. Coleman,et al.  Orbital mapping of the lunar magnetic field , 1973 .

[39]  H. Hasegawa,et al.  Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin–Helmholtz vortices , 2004, Nature.

[40]  J. Brackbill,et al.  Nonlinear evolution of the lower hybrid drift instability: Current sheet thinning and kinking , 2002 .

[41]  First observation of a mini‐magnetosphere above a lunar magnetic anomaly using energetic neutral atoms , 2010, 1011.4442.

[42]  L. Hood,et al.  A preliminary global map of the vector lunar crustal magnetic field based on Lunar Prospector magnetometer data , 2008 .

[43]  Stefano Markidis,et al.  Formation of a transient front structure near reconnection point in 3‐D PIC simulations , 2013 .

[44]  S. Markidis,et al.  ENERGY DISSIPATION IN MAGNETIC NULL POINTS AT KINETIC SCALES , 2015, 1509.07961.

[45]  Wolfgang Baumjohann,et al.  Collisionless magnetic reconnection in space plasmas , 2013, Front. Physics.

[46]  S. Sasaki,et al.  In-flight Performance and Initial Results of Plasma Energy Angle and Composition Experiment (PACE) on SELENE (Kaguya) , 2010 .

[47]  A. Vaivads,et al.  Statistics and accuracy of magnetic null identification in multispacecraft data , 2015 .

[48]  P. Pritchett Collisionless magnetic reconnection in an asymmetric current sheet , 2008 .

[49]  V. Ferraro On the theory of the first phase of a geomagnetic storm: A new illustrative calculation based on an idealised (plane not cylindrical) model field distribution , 1952 .

[50]  Hood,et al.  Lunar surface magnetic fields and their interaction with the solar wind: results from lunar prospector , 1998, Science.

[51]  Erwin Laure,et al.  Energetic particles in magnetotail reconnection , 2014, Journal of Plasma Physics.

[52]  K. Glassmeier,et al.  Magnetohydrodynamic simulation of an equatorial dipolar paleomagnetosphere , 2004 .

[53]  Michael E. Purucker,et al.  Global spherical harmonic models of the internal magnetic field of the Moon based on sequential and coestimation approaches , 2010 .

[54]  D. Wendel,et al.  Current structure and nonideal behavior at magnetic null points in the turbulent magnetosheath , 2012 .

[55]  Å. Nordlund,et al.  Heating and activity of the solar corona: 3. Dynamics of a low beta plasma with three‐dimensional null points , 1997 .

[56]  Stefano Markidis,et al.  Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model , 2014, J. Comput. Phys..

[57]  S. Markidis,et al.  Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies. , 2014, Physical review letters.

[58]  M. Rycroft,et al.  Space research XIV , 1974 .

[59]  C. Parnell,et al.  Null Point Distribution in Global Coronal Potential Field Extrapolations , 2015 .

[60]  A. Bhardwaj,et al.  Energetic neutral atom observations of magnetic anomalies on the lunar surface , 2012 .

[61]  S. Markidis,et al.  Energetics of kinetic reconnection in a three-dimensional null-point cluster. , 2013, Physical review letters.

[62]  D. McKenzie,et al.  Three-Year Global Survey of Coronal Null Points from Potential-Field-Source-Surface (PFSS) Modeling and Solar Dynamics Observatory (SDO) Observations , 2014, 1410.4493.

[63]  P. L. Mcfadden,et al.  Evolution of the geomagnetic reversal rate since 160 Ma: Is the process continuous? , 2000 .

[64]  C. Sonett,et al.  Apollo 12 Magnetometer: Measurement of a Steady Magnetic Field on the Surface of the Moon , 1970, Science.

[65]  Magnetic field of the outer corpuscular region , 1960 .

[66]  D. Pontin,et al.  Generalised models for torsional spine and fan magnetic reconnection , 2011, 1105.2684.

[67]  M. Purucker A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations , 2008 .

[68]  Non-linear tearing of 3D null point current sheets , 2014, 1406.1622.

[69]  D. Pontin,et al.  Current accumulation at an asymmetric 3D null point caused by generic shearing motions , 2011, 1108.3304.

[70]  A. Bhattacharjee,et al.  Separator reconnection at Earth's dayside magnetopause under generic northward interplanetary magnetic field conditions , 2007 .

[71]  E. G. Harris On a plasma sheath separating regions of oppositely directed magnetic field , 1962 .