Parallel and interacting Markov chain Monte Carlo algorithm

In many situations it is important to be able to propose N independent realizations of a given distribution law. We propose a strategy for making N parallel Monte Carlo Markov chains (MCMC) interact in order to get an approximation of an independent N-sample of a given target law. In this method each individual chain proposes candidates for all other chains. We prove that the set of interacting chains is itself a MCMC method for the product of N target measures. Compared to independent parallel chains this method is more time consuming, but we show through examples that it possesses many advantages. This approach is applied to a biomass evolution model.

[1]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[2]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[3]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[4]  Stephen M. Krone,et al.  Markov Chain Monte Carlo in small worlds , 2006, Stat. Comput..

[5]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[6]  D. Chauveau,et al.  Improving Convergence of the Hastings–Metropolis Algorithm with an Adaptive Proposal , 2002 .

[7]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[8]  Kathryn B. Laskey,et al.  Population Markov Chain Monte Carlo , 2004, Machine Learning.

[9]  Chang-Tai Chao Markov Chain Monte Carlo on optimal adaptive sampling selections , 2004, Environmental and Ecological Statistics.

[10]  O. Cappé,et al.  Population Monte Carlo , 2004 .

[11]  Fabien Campillo,et al.  Computational probability modeling and Bayesian inference , 2007, ARIMA J..

[12]  Dirk Thierens,et al.  Recombinative EMCMC algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.

[13]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo in Practice: A Roundtable Discussion , 1998 .

[15]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[16]  Dirk Thierens,et al.  Evolutionary Markov Chain Monte Carlo , 2003, Artificial Evolution.

[17]  R. Maitra,et al.  Supplement to “ A k-mean-directions Algorithm for Fast Clustering of Data on the Sphere ” published in the Journal of Computational and Graphical Statistics , 2009 .

[18]  Walter R. Gilks,et al.  Strategies for improving MCMC , 1995 .

[20]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[21]  Yukito IBA,et al.  Population Monte Carlo algorithms , 2000, cond-mat/0008226.

[22]  B. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[23]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[24]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[25]  Algorithmes de Hastings–Metropolis en interaction , 2001 .

[26]  Ajay Jasra,et al.  On population-based simulation for static inference , 2007, Stat. Comput..