Factorization of multivariate positive Laurent polynomials

Recently Dritschel proved that any positive multivariate Laurent polynomial can be factorized into a sum of square magnitudes of polynomials. We first give another proof of the Dritschel theorem. Our proof is based on the univariate matrix Fejer-Riesz theorem. Then we discuss a computational method to find approximates of polynomial matrix factorization. Some numerical examples will be shown. Finally we discuss how to compute nonnegative Laurent polynomial factorizations in the multivariate setting.

[1]  Charles A. Micchelli,et al.  Spectral factorization of Laurent polynomials , 1997, Adv. Comput. Math..

[2]  S. Basu,et al.  A constructive algorithm for 2-D spectral factorization with rational spectral factors , 2000 .

[3]  Oppenheim Angewandte Mathematik , 1917 .

[4]  Hugo J. Woerdeman,et al.  Spectral Factorizations and Sums of Squares Representations via Semidefinite Programming , 2001, SIAM J. Matrix Anal. Appl..

[5]  Friedrich Riesz,et al.  Über ein Probelm des Herrn Carathéodory. , 1916 .

[6]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[7]  Tim N. T. Goodman,et al.  On the Cholesky Factorization of the Gram Matrix of Multivariate Functions , 2000, SIAM J. Matrix Anal. Appl..

[8]  Giuseppe Rodriguez,et al.  Spectral factorization of bi-infinite block Toeplitz matrices with applications , 2000 .

[9]  M Rosenblatt,et al.  THE MULTIDIMENSIONAL PREDICTION PROBLEM. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Hugo J. Woerdeman,et al.  Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables , 2004 .

[11]  Ming-Jun Lai,et al.  Construction of multivariate compactly supported tight wavelet frames , 2006 .

[12]  Murray Rosenblatt,et al.  A multi-dimensional prediction problem , 1958 .

[13]  Tim N. T. Goodman,et al.  On the Cholesky factorization of the Gram matrix of locally supported functions , 1995 .

[14]  Marvin Rosenblum Vectorial Toeplitz operators and the Fejér-Riesz theorem , 1968 .

[15]  Qiyu Sun,et al.  The Matrix-Valued Riesz Lemma and Local Orthonormal Bases in Shift-Invariant Spaces , 2004, Adv. Comput. Math..

[16]  Ming-Jun Lai,et al.  On Computation of Battle-Lemarié's Wavelets , 1994 .

[17]  Dante C. Youla,et al.  Bauer-type factorization of positive matrices and the theory of matrix polynomials orthogonal on the unit circle , 1978 .

[18]  S. Seatzu,et al.  Spectral factorization of bi-infinite multi-index block Toeplitz matrices☆ , 2002 .

[19]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[20]  C. D. Boor,et al.  Recent Advances in Numerical Analysis. , 1982 .

[21]  Giuseppe Rodriguez,et al.  Block Cholesky factorization of infinite matrices and orthonormalization of vectors of functions , 1998 .

[22]  Michael A. Dritschel,et al.  On Factorization of Trigonometric Polynomials , 2004 .

[23]  Ali H. Sayed,et al.  A survey of spectral factorization methods , 2001, Numer. Linear Algebra Appl..

[24]  L. Fejér Über trigonometrische Polynome. , 1916 .

[25]  W. Rudin The extension problem for positive-definite functions , 1963 .